sklears_compose/
performance_optimization.rs

1//! # Performance Optimization Module
2//!
3//! This module provides comprehensive performance optimization capabilities for the
4//! composable execution framework. It includes algorithms and strategies to optimize
5//! execution performance, resource utilization, throughput, latency, and overall
6//! system efficiency through intelligent optimization techniques.
7//!
8//! # Performance Optimization Architecture
9//!
10//! The performance optimization system is built around multiple specialized optimizers:
11//!
12//! ```text
13//! PerformanceOptimizer (main coordinator)
14//! ├── ThroughputOptimizer      // Maximize task completion rate
15//! ├── LatencyOptimizer         // Minimize task execution latency
16//! ├── ResourceOptimizer        // Optimize resource utilization
17//! ├── EnergyOptimizer          // Minimize energy consumption
18//! ├── CacheOptimizer           // Optimize cache hit rates
19//! ├── MemoryOptimizer          // Optimize memory usage patterns
20//! ├── NetworkOptimizer         // Optimize network performance
21//! ├── LoadBalanceOptimizer     // Balance load distribution
22//! ├── PipelineOptimizer        // Optimize execution pipelines
23//! └── PredictiveOptimizer      // ML-based performance prediction
24//! ```
25//!
26//! # Optimization Strategies
27//!
28//! ## Throughput Optimization
29//! - **Parallel Processing**: Maximize concurrent task execution
30//! - **Batch Processing**: Group similar tasks for efficiency
31//! - **Pipeline Optimization**: Minimize pipeline stalls
32//! - **Resource Scaling**: Dynamic resource allocation
33//!
34//! ## Latency Optimization
35//! - **Task Prioritization**: High-priority task fast paths
36//! - **Preemptive Scheduling**: Interrupt low-priority tasks
37//! - **Cache Warming**: Proactive cache population
38//! - **Resource Pre-allocation**: Avoid allocation delays
39//!
40//! ## Resource Optimization
41//! - **Utilization Maximization**: Keep resources busy
42//! - **Fragmentation Reduction**: Minimize resource waste
43//! - **Locality Optimization**: CPU/memory/network locality
44//! - **Dynamic Scaling**: Scale resources with demand
45//!
46//! ## Energy Optimization
47//! - **Frequency Scaling**: Dynamic CPU frequency adjustment
48//! - **Idle State Management**: Efficient power state transitions
49//! - **Thermal Management**: Temperature-aware optimization
50//! - **Workload Consolidation**: Reduce active hardware
51//!
52//! # Usage Examples
53//!
54//! ## Basic Performance Optimization
55//! ```rust,ignore
56//! use sklears_compose::performance_optimization::*;
57//!
58//! // Create performance optimizer with default configuration
59//! let mut optimizer = PerformanceOptimizer::new()?;
60//! optimizer.initialize()?;
61//!
62//! // Configure optimization goals
63//! let goals = OptimizationGoals {
64//!     primary_objective: OptimizationObjective::Throughput,
65//!     secondary_objectives: vec![
66//!         OptimizationObjective::ResourceUtilization,
67//!         OptimizationObjective::EnergyEfficiency,
68//!     ],
69//!     constraints: OptimizationConstraints {
70//!         max_latency: Some(Duration::from_millis(100)),
71//!         min_throughput: Some(1000.0), // tasks/sec
72//!         max_energy_consumption: Some(500.0), // watts
73//!         ..Default::default()
74//!     },
75//! };
76//!
77//! optimizer.set_goals(goals)?;
78//! ```
79//!
80//! ## Advanced Throughput Optimization
81//! ```rust,ignore
82//! // Configure throughput optimizer
83//! let throughput_config = ThroughputOptimizerConfig {
84//!     target_throughput: 2000.0, // tasks/sec
85//!     optimization_strategy: ThroughputStrategy::MaxParallel,
86//!     batch_size_optimization: true,
87//!     pipeline_optimization: true,
88//!     resource_scaling: true,
89//!     load_balancing: true,
90//! };
91//!
92//! let throughput_optimizer = ThroughputOptimizer::new(throughput_config)?;
93//! optimizer.add_optimizer(Box::new(throughput_optimizer))?;
94//!
95//! // Start optimization loop
96//! optimizer.start_optimization().await?;
97//! ```
98//!
99//! ## Latency-Critical Optimization
100//! ```rust,ignore
101//! // Configure for ultra-low latency
102//! let latency_config = LatencyOptimizerConfig {
103//!     target_latency: Duration::from_micros(500), // 500μs target
104//!     optimization_strategy: LatencyStrategy::PreemptiveScheduling,
105//!     enable_cache_warming: true,
106//!     enable_preallocation: true,
107//!     enable_fast_paths: true,
108//!     jitter_reduction: true,
109//! };
110//!
111//! let latency_optimizer = LatencyOptimizer::new(latency_config)?;
112//! optimizer.add_optimizer(Box::new(latency_optimizer))?;
113//! ```
114//!
115//! ## Energy-Efficient Optimization
116//! ```rust,ignore
117//! // Configure for energy efficiency
118//! let energy_config = EnergyOptimizerConfig {
119//!     target_efficiency: 0.9, // 90% efficiency
120//!     enable_frequency_scaling: true,
121//!     enable_idle_states: true,
122//!     enable_thermal_management: true,
123//!     workload_consolidation: true,
124//!     green_computing_mode: true,
125//! };
126//!
127//! let energy_optimizer = EnergyOptimizer::new(energy_config)?;
128//! optimizer.add_optimizer(Box::new(energy_optimizer))?;
129//! ```
130//!
131//! ## Machine Learning-Based Optimization
132//! ```rust,ignore
133//! // Configure predictive optimizer
134//! let ml_config = PredictiveOptimizerConfig {
135//!     model_type: MLModelType::NeuralNetwork,
136//!     training_data_size: 10000,
137//!     prediction_horizon: Duration::from_secs(60),
138//!     learning_rate: 0.001,
139//!     enable_online_learning: true,
140//!     feature_engineering: true,
141//! };
142//!
143//! let predictive_optimizer = PredictiveOptimizer::new(ml_config)?;
144//! optimizer.add_optimizer(Box::new(predictive_optimizer))?;
145//! ```
146
147use crate::execution_core::ExecutionStrategy;
148use sklears_core::error::Result as SklResult;
149use std::collections::{HashMap, VecDeque};
150use std::fmt;
151use std::future::Future;
152use std::pin::Pin;
153use std::sync::{Arc, Mutex, RwLock};
154use std::time::{Duration, SystemTime};
155
156/// Main performance optimizer coordinating all optimization strategies
157#[derive(Debug)]
158pub struct PerformanceOptimizer {
159    /// Optimization configuration
160    config: OptimizerConfig,
161    /// Optimization goals
162    goals: OptimizationGoals,
163    /// Specialized optimizers
164    optimizers: Vec<Box<dyn SpecializedOptimizer>>,
165    /// Performance metrics collector
166    metrics: Arc<Mutex<PerformanceMetrics>>,
167    /// Optimization history
168    history: Arc<Mutex<VecDeque<OptimizationResult>>>,
169    /// Current optimization state
170    state: Arc<RwLock<OptimizerState>>,
171    /// Performance baselines
172    baselines: Arc<RwLock<PerformanceBaselines>>,
173}
174
175/// Optimizer configuration
176#[derive(Debug, Clone)]
177pub struct OptimizerConfig {
178    /// Optimization interval
179    pub optimization_interval: Duration,
180    /// Enable continuous optimization
181    pub continuous_optimization: bool,
182    /// Performance measurement window
183    pub measurement_window: Duration,
184    /// Optimization aggressiveness (0.0 to 1.0)
185    pub aggressiveness: f64,
186    /// Stability threshold for changes
187    pub stability_threshold: f64,
188    /// Enable experimental optimizations
189    pub experimental_optimizations: bool,
190    /// Maximum optimization iterations
191    pub max_iterations: usize,
192    /// Convergence tolerance
193    pub convergence_tolerance: f64,
194}
195
196/// Optimization goals and objectives
197#[derive(Debug, Clone)]
198pub struct OptimizationGoals {
199    /// Primary optimization objective
200    pub primary_objective: OptimizationObjective,
201    /// Secondary objectives (in priority order)
202    pub secondary_objectives: Vec<OptimizationObjective>,
203    /// Optimization constraints
204    pub constraints: OptimizationConstraints,
205    /// Target performance metrics
206    pub targets: PerformanceTargets,
207    /// Optimization weights for multi-objective optimization
208    pub weights: ObjectiveWeights,
209}
210
211/// Optimization objectives
212#[derive(Debug, Clone, PartialEq)]
213pub enum OptimizationObjective {
214    /// Maximize task throughput
215    Throughput,
216    /// Minimize task latency
217    Latency,
218    /// Maximize resource utilization
219    ResourceUtilization,
220    /// Minimize energy consumption
221    EnergyEfficiency,
222    /// Minimize cost
223    Cost,
224    /// Maximize reliability
225    Reliability,
226    /// Minimize jitter/variance
227    Stability,
228    /// Custom objective
229    Custom(String),
230}
231
232/// Optimization constraints
233#[derive(Debug, Clone)]
234pub struct OptimizationConstraints {
235    /// Maximum acceptable latency
236    pub max_latency: Option<Duration>,
237    /// Minimum required throughput
238    pub min_throughput: Option<f64>,
239    /// Maximum energy consumption
240    pub max_energy_consumption: Option<f64>,
241    /// Maximum cost budget
242    pub max_cost: Option<f64>,
243    /// Minimum reliability requirement
244    pub min_reliability: Option<f64>,
245    /// Resource usage limits
246    pub resource_limits: ResourceLimits,
247    /// SLA requirements
248    pub sla_requirements: Vec<SlaRequirement>,
249}
250
251/// Resource usage limits
252#[derive(Debug, Clone)]
253pub struct ResourceLimits {
254    /// Maximum CPU utilization percentage
255    pub max_cpu_utilization: Option<f64>,
256    /// Maximum memory utilization percentage
257    pub max_memory_utilization: Option<f64>,
258    /// Maximum GPU utilization percentage
259    pub max_gpu_utilization: Option<f64>,
260    /// Maximum network utilization percentage
261    pub max_network_utilization: Option<f64>,
262    /// Maximum storage utilization percentage
263    pub max_storage_utilization: Option<f64>,
264}
265
266/// SLA requirement
267#[derive(Debug, Clone)]
268pub struct SlaRequirement {
269    /// SLA name
270    pub name: String,
271    /// Metric type
272    pub metric_type: SlaMetricType,
273    /// Target value
274    pub target_value: f64,
275    /// Tolerance
276    pub tolerance: f64,
277    /// Penalty for violation
278    pub penalty: f64,
279}
280
281/// SLA metric types
282#[derive(Debug, Clone, PartialEq)]
283pub enum SlaMetricType {
284    /// Latency
285    Latency,
286    /// Throughput
287    Throughput,
288    /// Availability
289    Availability,
290    /// ErrorRate
291    ErrorRate,
292    /// ResponseTime
293    ResponseTime,
294    /// Custom
295    Custom(String),
296}
297
298/// Performance targets
299#[derive(Debug, Clone)]
300pub struct PerformanceTargets {
301    /// Target throughput (tasks/second)
302    pub throughput: Option<f64>,
303    /// Target latency
304    pub latency: Option<Duration>,
305    /// Target resource utilization
306    pub resource_utilization: Option<f64>,
307    /// Target energy efficiency
308    pub energy_efficiency: Option<f64>,
309    /// Target cost efficiency
310    pub cost_efficiency: Option<f64>,
311    /// Target reliability (uptime percentage)
312    pub reliability: Option<f64>,
313}
314
315/// Objective weights for multi-objective optimization
316#[derive(Debug, Clone)]
317pub struct ObjectiveWeights {
318    /// Throughput weight
319    pub throughput: f64,
320    /// Latency weight
321    pub latency: f64,
322    /// Resource utilization weight
323    pub resource_utilization: f64,
324    /// Energy efficiency weight
325    pub energy_efficiency: f64,
326    /// Cost weight
327    pub cost: f64,
328    /// Reliability weight
329    pub reliability: f64,
330    /// Stability weight
331    pub stability: f64,
332}
333
334/// Specialized optimizer trait
335pub trait SpecializedOptimizer: Send + Sync + fmt::Debug {
336    /// Get optimizer name
337    fn name(&self) -> &str;
338
339    /// Get optimization domain
340    fn domain(&self) -> OptimizationDomain;
341
342    /// Initialize the optimizer
343    fn initialize(&mut self) -> SklResult<()>;
344
345    /// Analyze current performance
346    fn analyze_performance(&self, metrics: &PerformanceMetrics) -> SklResult<PerformanceAnalysis>;
347
348    /// Generate optimization recommendations
349    fn generate_recommendations(
350        &self,
351        analysis: &PerformanceAnalysis,
352    ) -> SklResult<Vec<OptimizationRecommendation>>;
353
354    /// Apply optimizations
355    fn apply_optimizations(
356        &mut self,
357        recommendations: &[OptimizationRecommendation],
358    ) -> Pin<Box<dyn Future<Output = SklResult<OptimizationResult>> + Send + '_>>;
359
360    /// Get optimizer metrics
361    fn get_metrics(&self) -> SklResult<OptimizerMetrics>;
362
363    /// Update optimizer configuration
364    fn update_config(&mut self, config: HashMap<String, String>) -> SklResult<()>;
365}
366
367/// Optimization domains
368#[derive(Debug, Clone, PartialEq)]
369pub enum OptimizationDomain {
370    /// Throughput
371    Throughput,
372    /// Latency
373    Latency,
374    /// Resource
375    Resource,
376    /// Energy
377    Energy,
378    /// Cache
379    Cache,
380    /// Memory
381    Memory,
382    /// Network
383    Network,
384    /// LoadBalance
385    LoadBalance,
386    /// Pipeline
387    Pipeline,
388    /// Predictive
389    Predictive,
390}
391
392/// Performance analysis result
393#[derive(Debug, Clone)]
394pub struct PerformanceAnalysis {
395    /// Analysis timestamp
396    pub timestamp: SystemTime,
397    /// Analysis domain
398    pub domain: OptimizationDomain,
399    /// Current performance score (0.0 to 1.0)
400    pub performance_score: f64,
401    /// Bottlenecks identified
402    pub bottlenecks: Vec<PerformanceBottleneck>,
403    /// Optimization opportunities
404    pub opportunities: Vec<OptimizationOpportunity>,
405    /// Performance trends
406    pub trends: PerformanceTrends,
407    /// Analysis confidence
408    pub confidence: f64,
409}
410
411/// Performance bottleneck
412#[derive(Debug, Clone)]
413pub struct PerformanceBottleneck {
414    /// Bottleneck type
415    pub bottleneck_type: BottleneckType,
416    /// Severity (0.0 to 1.0)
417    pub severity: f64,
418    /// Impact on performance
419    pub impact: f64,
420    /// Root cause
421    pub root_cause: String,
422    /// Resolution difficulty
423    pub resolution_difficulty: f64,
424}
425
426/// Bottleneck types
427#[derive(Debug, Clone, PartialEq)]
428pub enum BottleneckType {
429    CpuBound,
430    MemoryBound,
431    IoBound,
432    NetworkBound,
433    CacheMiss,
434    ContentionLock,
435    ResourceStarvation,
436    Scheduling,
437    Custom(String),
438}
439
440/// Optimization opportunity
441#[derive(Debug, Clone)]
442pub struct OptimizationOpportunity {
443    /// Opportunity type
444    pub opportunity_type: OpportunityType,
445    /// Potential improvement
446    pub potential_improvement: f64,
447    /// Implementation effort
448    pub implementation_effort: f64,
449    /// Risk level
450    pub risk_level: f64,
451    /// Dependencies
452    pub dependencies: Vec<String>,
453}
454
455/// Opportunity types
456#[derive(Debug, Clone, PartialEq)]
457pub enum OpportunityType {
458    /// ParallelizationIncrease
459    ParallelizationIncrease,
460    /// CacheOptimization
461    CacheOptimization,
462    /// MemoryLayoutOptimization
463    MemoryLayoutOptimization,
464    /// AlgorithmOptimization
465    AlgorithmOptimization,
466    /// ResourceReallocation
467    ResourceReallocation,
468    /// LoadRebalancing
469    LoadRebalancing,
470    /// PipelineOptimization
471    PipelineOptimization,
472    /// BatchSizeOptimization
473    BatchSizeOptimization,
474    /// Custom
475    Custom(String),
476}
477
478/// Performance trends analysis
479#[derive(Debug, Clone, Default)]
480pub struct PerformanceTrends {
481    /// Throughput trend
482    pub throughput_trend: TrendData,
483    /// Latency trend
484    pub latency_trend: TrendData,
485    /// Resource utilization trend
486    pub resource_trend: TrendData,
487    /// Energy consumption trend
488    pub energy_trend: TrendData,
489    /// Error rate trend
490    pub error_trend: TrendData,
491}
492
493/// Trend data
494#[derive(Debug, Clone)]
495pub struct TrendData {
496    /// Trend direction
497    pub direction: TrendDirection,
498    /// Trend magnitude
499    pub magnitude: f64,
500    /// Trend confidence
501    pub confidence: f64,
502    /// Prediction for next period
503    pub prediction: f64,
504    /// Historical variance
505    pub variance: f64,
506}
507
508/// Trend directions
509#[derive(Debug, Clone, PartialEq)]
510pub enum TrendDirection {
511    /// Improving
512    Improving,
513    /// Degrading
514    Degrading,
515    /// Stable
516    Stable,
517    /// Oscillating
518    Oscillating,
519    /// Unknown
520    Unknown,
521}
522
523/// Optimization recommendation
524#[derive(Debug, Clone)]
525pub struct OptimizationRecommendation {
526    /// Recommendation ID
527    pub id: String,
528    /// Recommendation type
529    pub recommendation_type: RecommendationType,
530    /// Target component
531    pub target: String,
532    /// Recommended action
533    pub action: OptimizationAction,
534    /// Expected impact
535    pub expected_impact: ExpectedImpact,
536    /// Implementation priority
537    pub priority: RecommendationPriority,
538    /// Implementation risk
539    pub risk: RiskAssessment,
540}
541
542/// Recommendation types
543#[derive(Debug, Clone, PartialEq)]
544pub enum RecommendationType {
545    /// ConfigurationChange
546    ConfigurationChange,
547    /// ResourceReallocation
548    ResourceReallocation,
549    /// AlgorithmChange
550    AlgorithmChange,
551    /// ArchitectureChange
552    ArchitectureChange,
553    /// ParameterTuning
554    ParameterTuning,
555    /// CacheConfiguration
556    CacheConfiguration,
557    /// SchedulingPolicy
558    SchedulingPolicy,
559    /// LoadBalancing
560    LoadBalancing,
561}
562
563/// Optimization actions
564#[derive(Debug, Clone)]
565pub enum OptimizationAction {
566    /// Change configuration parameter
567    ChangeParameter { name: String, value: String },
568    /// Scale resource allocation
569    ScaleResource { resource: String, factor: f64 },
570    /// Change algorithm
571    ChangeAlgorithm { from: String, to: String },
572    /// Adjust batch size
573    AdjustBatchSize { new_size: usize },
574    /// Enable/disable feature
575    ToggleFeature { feature: String, enabled: bool },
576    /// Custom action
577    Custom {
578        action: String,
579        parameters: HashMap<String, String>,
580    },
581}
582
583/// Expected impact of optimization
584#[derive(Debug, Clone)]
585pub struct ExpectedImpact {
586    /// Throughput improvement (percentage)
587    pub throughput_improvement: f64,
588    /// Latency reduction (percentage)
589    pub latency_reduction: f64,
590    /// Resource savings (percentage)
591    pub resource_savings: f64,
592    /// Energy savings (percentage)
593    pub energy_savings: f64,
594    /// Cost savings (percentage)
595    pub cost_savings: f64,
596    /// Implementation time
597    pub implementation_time: Duration,
598}
599
600/// Recommendation priority
601#[derive(Debug, Clone, PartialEq, PartialOrd)]
602pub enum RecommendationPriority {
603    /// Low
604    Low,
605    /// Medium
606    Medium,
607    /// High
608    High,
609    /// Critical
610    Critical,
611}
612
613/// Risk assessment
614#[derive(Debug, Clone)]
615pub struct RiskAssessment {
616    /// Overall risk level (0.0 to 1.0)
617    pub risk_level: f64,
618    /// Potential negative impacts
619    pub negative_impacts: Vec<String>,
620    /// Rollback difficulty
621    pub rollback_difficulty: f64,
622    /// Testing requirements
623    pub testing_requirements: Vec<String>,
624}
625
626/// Optimization result
627#[derive(Debug, Clone)]
628pub struct OptimizationResult {
629    /// Result ID
630    pub id: String,
631    /// Optimization timestamp
632    pub timestamp: SystemTime,
633    /// Optimization domain
634    pub domain: OptimizationDomain,
635    /// Applied recommendations
636    pub applied_recommendations: Vec<String>,
637    /// Performance before optimization
638    pub before_metrics: PerformanceSnapshot,
639    /// Performance after optimization
640    pub after_metrics: PerformanceSnapshot,
641    /// Actual impact
642    pub actual_impact: ActualImpact,
643    /// Success status
644    pub success: bool,
645    /// Error message if failed
646    pub error_message: Option<String>,
647}
648
649/// Performance snapshot
650#[derive(Debug, Clone)]
651pub struct PerformanceSnapshot {
652    /// Timestamp
653    pub timestamp: SystemTime,
654    /// Throughput (tasks/second)
655    pub throughput: f64,
656    /// Average latency
657    pub latency: Duration,
658    /// Resource utilization
659    pub resource_utilization: f64,
660    /// Energy consumption
661    pub energy_consumption: f64,
662    /// Error rate
663    pub error_rate: f64,
664    /// Cost rate
665    pub cost_rate: f64,
666}
667
668/// Actual impact of optimization
669#[derive(Debug, Clone)]
670pub struct ActualImpact {
671    /// Actual throughput improvement
672    pub throughput_improvement: f64,
673    /// Actual latency reduction
674    pub latency_reduction: f64,
675    /// Actual resource savings
676    pub resource_savings: f64,
677    /// Actual energy savings
678    pub energy_savings: f64,
679    /// Actual cost savings
680    pub cost_savings: f64,
681    /// Side effects observed
682    pub side_effects: Vec<String>,
683}
684
685/// Performance metrics collector
686#[derive(Debug, Clone)]
687pub struct PerformanceMetrics {
688    /// Current throughput
689    pub current_throughput: f64,
690    /// Current latency
691    pub current_latency: Duration,
692    /// Resource utilization breakdown
693    pub resource_utilization: ResourceUtilizationMetrics,
694    /// Energy consumption metrics
695    pub energy_metrics: EnergyMetrics,
696    /// Cache performance metrics
697    pub cache_metrics: CacheMetrics,
698    /// Network performance metrics
699    pub network_metrics: NetworkPerformanceMetrics,
700    /// Pipeline metrics
701    pub pipeline_metrics: PipelineMetrics,
702    /// Quality metrics
703    pub quality_metrics: QualityMetrics,
704    /// Measurement timestamp
705    pub timestamp: SystemTime,
706}
707
708/// Resource utilization metrics
709#[derive(Debug, Clone)]
710pub struct ResourceUtilizationMetrics {
711    /// CPU utilization percentage
712    pub cpu_utilization: f64,
713    /// Memory utilization percentage
714    pub memory_utilization: f64,
715    /// GPU utilization percentage
716    pub gpu_utilization: Option<f64>,
717    /// Storage I/O utilization
718    pub storage_utilization: f64,
719    /// Network utilization
720    pub network_utilization: f64,
721    /// Utilization efficiency score
722    pub efficiency_score: f64,
723}
724
725/// Energy consumption metrics
726#[derive(Debug, Clone)]
727pub struct EnergyMetrics {
728    /// Total power consumption (watts)
729    pub total_power: f64,
730    /// CPU power consumption
731    pub cpu_power: f64,
732    /// GPU power consumption
733    pub gpu_power: Option<f64>,
734    /// Memory power consumption
735    pub memory_power: f64,
736    /// Storage power consumption
737    pub storage_power: f64,
738    /// Cooling power consumption
739    pub cooling_power: f64,
740    /// Energy efficiency (tasks/joule)
741    pub energy_efficiency: f64,
742}
743
744/// Cache performance metrics
745#[derive(Debug, Clone)]
746pub struct CacheMetrics {
747    /// L1 cache hit rate
748    pub l1_hit_rate: f64,
749    /// L2 cache hit rate
750    pub l2_hit_rate: f64,
751    /// L3 cache hit rate
752    pub l3_hit_rate: f64,
753    /// Memory cache hit rate
754    pub memory_cache_hit_rate: f64,
755    /// Storage cache hit rate
756    pub storage_cache_hit_rate: f64,
757    /// Average cache access time
758    pub average_access_time: Duration,
759}
760
761/// Network performance metrics
762#[derive(Debug, Clone)]
763pub struct NetworkPerformanceMetrics {
764    /// Bandwidth utilization
765    pub bandwidth_utilization: f64,
766    /// Average latency
767    pub average_latency: Duration,
768    /// Packet loss rate
769    pub packet_loss_rate: f64,
770    /// Jitter
771    pub jitter: Duration,
772    /// Connection efficiency
773    pub connection_efficiency: f64,
774}
775
776/// Pipeline performance metrics
777#[derive(Debug, Clone)]
778pub struct PipelineMetrics {
779    /// Pipeline throughput
780    pub pipeline_throughput: f64,
781    /// Stage utilization
782    pub stage_utilization: Vec<f64>,
783    /// Pipeline efficiency
784    pub pipeline_efficiency: f64,
785    /// Bottleneck stages
786    pub bottleneck_stages: Vec<usize>,
787    /// Average pipeline latency
788    pub average_pipeline_latency: Duration,
789}
790
791/// Quality metrics
792#[derive(Debug, Clone)]
793pub struct QualityMetrics {
794    /// Error rate
795    pub error_rate: f64,
796    /// Success rate
797    pub success_rate: f64,
798    /// Retry rate
799    pub retry_rate: f64,
800    /// Data quality score
801    pub data_quality_score: f64,
802    /// Service availability
803    pub availability: f64,
804}
805
806/// Optimizer state
807#[derive(Debug, Clone)]
808pub struct OptimizerState {
809    /// Is optimizer active?
810    pub active: bool,
811    /// Current optimization phase
812    pub phase: OptimizationPhase,
813    /// Iterations completed
814    pub iterations_completed: usize,
815    /// Last optimization time
816    pub last_optimization: SystemTime,
817    /// Optimization score
818    pub optimization_score: f64,
819    /// Convergence status
820    pub converged: bool,
821}
822
823/// Optimization phases
824#[derive(Debug, Clone, PartialEq)]
825pub enum OptimizationPhase {
826    /// Initialization
827    Initialization,
828    /// Analysis
829    Analysis,
830    /// RecommendationGeneration
831    RecommendationGeneration,
832    /// Implementation
833    Implementation,
834    /// Validation
835    Validation,
836    /// Monitoring
837    Monitoring,
838    /// Idle
839    Idle,
840}
841
842/// Optimizer metrics
843#[derive(Debug, Clone)]
844pub struct OptimizerMetrics {
845    /// Total optimizations performed
846    pub total_optimizations: u64,
847    /// Successful optimizations
848    pub successful_optimizations: u64,
849    /// Failed optimizations
850    pub failed_optimizations: u64,
851    /// Average improvement achieved
852    pub average_improvement: f64,
853    /// Optimization frequency
854    pub optimization_frequency: f64,
855    /// Time spent optimizing
856    pub time_spent: Duration,
857}
858
859/// Performance baselines for comparison
860#[derive(Debug, Clone)]
861pub struct PerformanceBaselines {
862    /// Baseline performance metrics
863    pub baseline_metrics: PerformanceSnapshot,
864    /// Best achieved performance
865    pub best_performance: PerformanceSnapshot,
866    /// Worst observed performance
867    pub worst_performance: PerformanceSnapshot,
868    /// Baseline establishment time
869    pub baseline_time: SystemTime,
870}
871
872/// Throughput optimizer implementation
873#[derive(Debug)]
874pub struct ThroughputOptimizer {
875    /// Configuration
876    config: ThroughputOptimizerConfig,
877    /// Current state
878    state: ThroughputOptimizerState,
879    /// Metrics
880    metrics: OptimizerMetrics,
881}
882
883/// Throughput optimizer configuration
884#[derive(Debug, Clone)]
885pub struct ThroughputOptimizerConfig {
886    /// Target throughput (tasks/second)
887    pub target_throughput: f64,
888    /// Optimization strategy
889    pub strategy: ThroughputStrategy,
890    /// Enable batch size optimization
891    pub batch_size_optimization: bool,
892    /// Enable pipeline optimization
893    pub pipeline_optimization: bool,
894    /// Enable resource scaling
895    pub resource_scaling: bool,
896    /// Enable load balancing
897    pub load_balancing: bool,
898    /// Maximum parallelism level
899    pub max_parallelism: usize,
900}
901
902/// Throughput optimization strategies
903#[derive(Debug, Clone, PartialEq)]
904pub enum ThroughputStrategy {
905    /// MaxParallel
906    MaxParallel,
907    /// OptimalBatching
908    OptimalBatching,
909    /// PipelineOptimization
910    PipelineOptimization,
911    /// AdaptiveScaling
912    AdaptiveScaling,
913    /// HybridApproach
914    HybridApproach,
915}
916
917/// Throughput optimizer state
918#[derive(Debug, Clone)]
919pub struct ThroughputOptimizerState {
920    /// Current parallelism level
921    pub current_parallelism: usize,
922    /// Current batch size
923    pub current_batch_size: usize,
924    /// Current throughput
925    pub current_throughput: f64,
926    /// Target gap
927    pub target_gap: f64,
928    /// Optimization attempts
929    pub optimization_attempts: usize,
930}
931
932/// Latency optimizer implementation
933#[derive(Debug)]
934pub struct LatencyOptimizer {
935    /// Configuration
936    config: LatencyOptimizerConfig,
937    /// Current state
938    state: LatencyOptimizerState,
939    /// Metrics
940    metrics: OptimizerMetrics,
941}
942
943/// Latency optimizer configuration
944#[derive(Debug, Clone)]
945pub struct LatencyOptimizerConfig {
946    /// Target latency
947    pub target_latency: Duration,
948    /// Optimization strategy
949    pub strategy: LatencyStrategy,
950    /// Enable cache warming
951    pub enable_cache_warming: bool,
952    /// Enable preallocation
953    pub enable_preallocation: bool,
954    /// Enable fast paths
955    pub enable_fast_paths: bool,
956    /// Enable jitter reduction
957    pub jitter_reduction: bool,
958    /// Latency tolerance
959    pub tolerance: Duration,
960}
961
962/// Latency optimization strategies
963#[derive(Debug, Clone, PartialEq)]
964pub enum LatencyStrategy {
965    /// PreemptiveScheduling
966    PreemptiveScheduling,
967    /// CacheOptimization
968    CacheOptimization,
969    /// PreallocationStrategy
970    PreallocationStrategy,
971    /// FastPathOptimization
972    FastPathOptimization,
973    /// JitterReduction
974    JitterReduction,
975}
976
977/// Latency optimizer state
978#[derive(Debug, Clone)]
979pub struct LatencyOptimizerState {
980    /// Current average latency
981    pub current_latency: Duration,
982    /// Current P95 latency
983    pub p95_latency: Duration,
984    /// Current P99 latency
985    pub p99_latency: Duration,
986    /// Target gap
987    pub target_gap: Duration,
988    /// Jitter level
989    pub jitter: Duration,
990}
991
992/// Energy optimizer implementation
993#[derive(Debug)]
994pub struct EnergyOptimizer {
995    /// Configuration
996    config: EnergyOptimizerConfig,
997    /// Current state
998    state: EnergyOptimizerState,
999    /// Metrics
1000    metrics: OptimizerMetrics,
1001}
1002
1003/// Energy optimizer configuration
1004#[derive(Debug, Clone)]
1005pub struct EnergyOptimizerConfig {
1006    /// Target energy efficiency
1007    pub target_efficiency: f64,
1008    /// Enable frequency scaling
1009    pub enable_frequency_scaling: bool,
1010    /// Enable idle states
1011    pub enable_idle_states: bool,
1012    /// Enable thermal management
1013    pub enable_thermal_management: bool,
1014    /// Enable workload consolidation
1015    pub workload_consolidation: bool,
1016    /// Green computing mode
1017    pub green_computing_mode: bool,
1018    /// Maximum power consumption
1019    pub max_power_consumption: Option<f64>,
1020}
1021
1022/// Energy optimizer state
1023#[derive(Debug, Clone)]
1024pub struct EnergyOptimizerState {
1025    /// Current power consumption
1026    pub current_power: f64,
1027    /// Current efficiency
1028    pub current_efficiency: f64,
1029    /// Thermal state
1030    pub thermal_state: ThermalState,
1031    /// Power management mode
1032    pub power_mode: PowerMode,
1033}
1034
1035/// Thermal states
1036#[derive(Debug, Clone, PartialEq)]
1037pub enum ThermalState {
1038    /// Cool
1039    Cool,
1040    /// Warm
1041    Warm,
1042    /// Hot
1043    Hot,
1044    /// Critical
1045    Critical,
1046}
1047
1048/// Power management modes
1049#[derive(Debug, Clone, PartialEq)]
1050pub enum PowerMode {
1051    /// Performance
1052    Performance,
1053    /// Balanced
1054    Balanced,
1055    /// PowerSaver
1056    PowerSaver,
1057    /// Green
1058    Green,
1059}
1060
1061/// Machine learning-based predictive optimizer
1062#[derive(Debug)]
1063pub struct PredictiveOptimizer {
1064    /// Configuration
1065    config: PredictiveOptimizerConfig,
1066    /// ML models
1067    models: HashMap<String, MLModel>,
1068    /// Training data
1069    training_data: VecDeque<TrainingDataPoint>,
1070    /// Predictions
1071    predictions: HashMap<String, PerformancePrediction>,
1072    /// State
1073    state: PredictiveOptimizerState,
1074}
1075
1076/// Predictive optimizer configuration
1077#[derive(Debug, Clone)]
1078pub struct PredictiveOptimizerConfig {
1079    /// ML model type
1080    pub model_type: MLModelType,
1081    /// Training data size
1082    pub training_data_size: usize,
1083    /// Prediction horizon
1084    pub prediction_horizon: Duration,
1085    /// Learning rate
1086    pub learning_rate: f64,
1087    /// Enable online learning
1088    pub enable_online_learning: bool,
1089    /// Feature engineering
1090    pub feature_engineering: bool,
1091    /// Model update frequency
1092    pub model_update_frequency: Duration,
1093}
1094
1095/// ML model types
1096#[derive(Debug, Clone, PartialEq)]
1097pub enum MLModelType {
1098    /// LinearRegression
1099    LinearRegression,
1100    /// NeuralNetwork
1101    NeuralNetwork,
1102    /// RandomForest
1103    RandomForest,
1104    /// SupportVectorMachine
1105    SupportVectorMachine,
1106    /// GradientBoosting
1107    GradientBoosting,
1108    /// LSTM
1109    LSTM,
1110    /// Custom
1111    Custom(String),
1112}
1113
1114/// ML model abstraction
1115#[derive(Debug, Clone)]
1116pub struct MLModel {
1117    /// Model name
1118    pub name: String,
1119    /// Model type
1120    pub model_type: MLModelType,
1121    /// Model parameters
1122    pub parameters: HashMap<String, f64>,
1123    /// Training accuracy
1124    pub accuracy: f64,
1125    /// Last training time
1126    pub last_trained: SystemTime,
1127    /// Prediction count
1128    pub prediction_count: u64,
1129}
1130
1131/// Training data point
1132#[derive(Debug, Clone)]
1133pub struct TrainingDataPoint {
1134    /// Timestamp
1135    pub timestamp: SystemTime,
1136    /// Features
1137    pub features: Vec<f64>,
1138    /// Target values
1139    pub targets: Vec<f64>,
1140    /// Context metadata
1141    pub context: HashMap<String, String>,
1142}
1143
1144/// Performance prediction
1145#[derive(Debug, Clone)]
1146pub struct PerformancePrediction {
1147    /// Prediction timestamp
1148    pub timestamp: SystemTime,
1149    /// Predicted throughput
1150    pub predicted_throughput: f64,
1151    /// Predicted latency
1152    pub predicted_latency: Duration,
1153    /// Predicted resource usage
1154    pub predicted_resource_usage: f64,
1155    /// Prediction confidence
1156    pub confidence: f64,
1157    /// Prediction horizon
1158    pub horizon: Duration,
1159}
1160
1161/// Predictive optimizer state
1162#[derive(Debug, Clone)]
1163pub struct PredictiveOptimizerState {
1164    /// Models trained
1165    pub models_trained: usize,
1166    /// Training data points
1167    pub training_data_points: usize,
1168    /// Predictions made
1169    pub predictions_made: u64,
1170    /// Average prediction accuracy
1171    pub average_accuracy: f64,
1172    /// Last model update
1173    pub last_model_update: SystemTime,
1174}
1175
1176// Implementation of main PerformanceOptimizer
1177impl PerformanceOptimizer {
1178    /// Create a new performance optimizer
1179    pub fn new() -> SklResult<Self> {
1180        Ok(Self {
1181            config: OptimizerConfig::default(),
1182            goals: OptimizationGoals::default(),
1183            optimizers: Vec::new(),
1184            metrics: Arc::new(Mutex::new(PerformanceMetrics::default())),
1185            history: Arc::new(Mutex::new(VecDeque::new())),
1186            state: Arc::new(RwLock::new(OptimizerState::default())),
1187            baselines: Arc::new(RwLock::new(PerformanceBaselines::default())),
1188        })
1189    }
1190
1191    /// Initialize the optimizer
1192    pub fn initialize(&mut self) -> SklResult<()> {
1193        let mut state = self.state.write().unwrap();
1194        state.active = true;
1195        state.phase = OptimizationPhase::Initialization;
1196        state.last_optimization = SystemTime::now();
1197        Ok(())
1198    }
1199
1200    /// Set optimization goals
1201    pub fn set_goals(&mut self, goals: OptimizationGoals) -> SklResult<()> {
1202        self.goals = goals;
1203        Ok(())
1204    }
1205
1206    /// Add a specialized optimizer
1207    pub fn add_optimizer(&mut self, optimizer: Box<dyn SpecializedOptimizer>) -> SklResult<()> {
1208        self.optimizers.push(optimizer);
1209        Ok(())
1210    }
1211
1212    /// Start optimization loop
1213    pub async fn start_optimization(&mut self) -> SklResult<()> {
1214        loop {
1215            self.optimization_iteration().await?;
1216            tokio::time::sleep(self.config.optimization_interval).await;
1217
1218            let state = self.state.read().unwrap();
1219            if !state.active {
1220                break;
1221            }
1222        }
1223        Ok(())
1224    }
1225
1226    /// Perform a single optimization iteration
1227    async fn optimization_iteration(&mut self) -> SklResult<()> {
1228        // Update state
1229        {
1230            let mut state = self.state.write().unwrap();
1231            state.phase = OptimizationPhase::Analysis;
1232            state.iterations_completed += 1;
1233        }
1234
1235        // Collect current metrics
1236        let current_metrics = self.collect_metrics()?;
1237
1238        // Analyze performance with all optimizers
1239        let mut all_recommendations = Vec::new();
1240        for optimizer in &self.optimizers {
1241            let analysis = optimizer.analyze_performance(&current_metrics)?;
1242            let recommendations = optimizer.generate_recommendations(&analysis)?;
1243            all_recommendations.extend(recommendations);
1244        }
1245
1246        // Prioritize and filter recommendations
1247        let selected_recommendations = self.select_recommendations(&all_recommendations)?;
1248
1249        // Apply optimizations
1250        {
1251            let mut state = self.state.write().unwrap();
1252            state.phase = OptimizationPhase::Implementation;
1253        }
1254
1255        for recommendation in selected_recommendations {
1256            self.apply_recommendation(&recommendation).await?;
1257        }
1258
1259        // Monitor results
1260        {
1261            let mut state = self.state.write().unwrap();
1262            state.phase = OptimizationPhase::Monitoring;
1263            state.last_optimization = SystemTime::now();
1264        }
1265
1266        Ok(())
1267    }
1268
1269    /// Collect current performance metrics
1270    fn collect_metrics(&self) -> SklResult<PerformanceMetrics> {
1271        // Placeholder implementation - would collect real metrics
1272        Ok(PerformanceMetrics::default())
1273    }
1274
1275    /// Select best recommendations to apply
1276    fn select_recommendations(
1277        &self,
1278        recommendations: &[OptimizationRecommendation],
1279    ) -> SklResult<Vec<OptimizationRecommendation>> {
1280        // Simple selection based on priority and expected impact
1281        let mut selected = recommendations
1282            .iter()
1283            .filter(|r| r.priority >= RecommendationPriority::Medium)
1284            .filter(|r| r.risk.risk_level < 0.7) // Low to medium risk only
1285            .cloned()
1286            .collect::<Vec<_>>();
1287
1288        // Sort by expected impact
1289        selected.sort_by(|a, b| {
1290            b.expected_impact
1291                .throughput_improvement
1292                .partial_cmp(&a.expected_impact.throughput_improvement)
1293                .unwrap_or(std::cmp::Ordering::Equal)
1294        });
1295
1296        // Take top N recommendations
1297        selected.truncate(5);
1298        Ok(selected)
1299    }
1300
1301    /// Apply a single recommendation
1302    async fn apply_recommendation(
1303        &mut self,
1304        recommendation: &OptimizationRecommendation,
1305    ) -> SklResult<()> {
1306        // Placeholder implementation - would apply actual optimization
1307        println!("Applying optimization: {:?}", recommendation.action);
1308        Ok(())
1309    }
1310
1311    /// Get optimization status
1312    #[must_use]
1313    pub fn get_status(&self) -> OptimizerState {
1314        self.state.read().unwrap().clone()
1315    }
1316
1317    /// Stop optimization
1318    pub fn stop(&mut self) -> SklResult<()> {
1319        let mut state = self.state.write().unwrap();
1320        state.active = false;
1321        Ok(())
1322    }
1323}
1324
1325// Implementation stubs for specialized optimizers
1326impl SpecializedOptimizer for ThroughputOptimizer {
1327    fn name(&self) -> &'static str {
1328        "ThroughputOptimizer"
1329    }
1330
1331    fn domain(&self) -> OptimizationDomain {
1332        OptimizationDomain::Throughput
1333    }
1334
1335    fn initialize(&mut self) -> SklResult<()> {
1336        Ok(())
1337    }
1338
1339    fn analyze_performance(&self, metrics: &PerformanceMetrics) -> SklResult<PerformanceAnalysis> {
1340        Ok(PerformanceAnalysis {
1341            timestamp: SystemTime::now(),
1342            domain: OptimizationDomain::Throughput,
1343            performance_score: 0.7,
1344            bottlenecks: Vec::new(),
1345            opportunities: Vec::new(),
1346            trends: PerformanceTrends::default(),
1347            confidence: 0.8,
1348        })
1349    }
1350
1351    fn generate_recommendations(
1352        &self,
1353        analysis: &PerformanceAnalysis,
1354    ) -> SklResult<Vec<OptimizationRecommendation>> {
1355        Ok(Vec::new())
1356    }
1357
1358    fn apply_optimizations(
1359        &mut self,
1360        recommendations: &[OptimizationRecommendation],
1361    ) -> Pin<Box<dyn Future<Output = SklResult<OptimizationResult>> + Send + '_>> {
1362        Box::pin(async move {
1363            Ok(OptimizationResult {
1364                id: uuid::Uuid::new_v4().to_string(),
1365                timestamp: SystemTime::now(),
1366                domain: OptimizationDomain::Throughput,
1367                applied_recommendations: Vec::new(),
1368                before_metrics: PerformanceSnapshot::default(),
1369                after_metrics: PerformanceSnapshot::default(),
1370                actual_impact: ActualImpact::default(),
1371                success: true,
1372                error_message: None,
1373            })
1374        })
1375    }
1376
1377    fn get_metrics(&self) -> SklResult<OptimizerMetrics> {
1378        Ok(self.metrics.clone())
1379    }
1380
1381    fn update_config(&mut self, _config: HashMap<String, String>) -> SklResult<()> {
1382        Ok(())
1383    }
1384}
1385
1386impl ThroughputOptimizer {
1387    pub fn new(config: ThroughputOptimizerConfig) -> SklResult<Self> {
1388        Ok(Self {
1389            config,
1390            state: ThroughputOptimizerState::default(),
1391            metrics: OptimizerMetrics::default(),
1392        })
1393    }
1394}
1395
1396impl LatencyOptimizer {
1397    pub fn new(config: LatencyOptimizerConfig) -> SklResult<Self> {
1398        Ok(Self {
1399            config,
1400            state: LatencyOptimizerState::default(),
1401            metrics: OptimizerMetrics::default(),
1402        })
1403    }
1404}
1405
1406impl EnergyOptimizer {
1407    pub fn new(config: EnergyOptimizerConfig) -> SklResult<Self> {
1408        Ok(Self {
1409            config,
1410            state: EnergyOptimizerState::default(),
1411            metrics: OptimizerMetrics::default(),
1412        })
1413    }
1414}
1415
1416impl PredictiveOptimizer {
1417    pub fn new(config: PredictiveOptimizerConfig) -> SklResult<Self> {
1418        Ok(Self {
1419            config,
1420            models: HashMap::new(),
1421            training_data: VecDeque::new(),
1422            predictions: HashMap::new(),
1423            state: PredictiveOptimizerState::default(),
1424        })
1425    }
1426}
1427
1428// Default implementations
1429impl Default for OptimizerConfig {
1430    fn default() -> Self {
1431        Self {
1432            optimization_interval: Duration::from_secs(30),
1433            continuous_optimization: true,
1434            measurement_window: Duration::from_secs(60),
1435            aggressiveness: 0.5,
1436            stability_threshold: 0.1,
1437            experimental_optimizations: false,
1438            max_iterations: 100,
1439            convergence_tolerance: 0.01,
1440        }
1441    }
1442}
1443
1444impl Default for OptimizationGoals {
1445    fn default() -> Self {
1446        Self {
1447            primary_objective: OptimizationObjective::Throughput,
1448            secondary_objectives: vec![
1449                OptimizationObjective::ResourceUtilization,
1450                OptimizationObjective::EnergyEfficiency,
1451            ],
1452            constraints: OptimizationConstraints::default(),
1453            targets: PerformanceTargets::default(),
1454            weights: ObjectiveWeights::default(),
1455        }
1456    }
1457}
1458
1459impl Default for OptimizationConstraints {
1460    fn default() -> Self {
1461        Self {
1462            max_latency: Some(Duration::from_millis(100)),
1463            min_throughput: Some(100.0),
1464            max_energy_consumption: None,
1465            max_cost: None,
1466            min_reliability: Some(0.99),
1467            resource_limits: ResourceLimits::default(),
1468            sla_requirements: Vec::new(),
1469        }
1470    }
1471}
1472
1473impl Default for ResourceLimits {
1474    fn default() -> Self {
1475        Self {
1476            max_cpu_utilization: Some(90.0),
1477            max_memory_utilization: Some(90.0),
1478            max_gpu_utilization: Some(90.0),
1479            max_network_utilization: Some(80.0),
1480            max_storage_utilization: Some(80.0),
1481        }
1482    }
1483}
1484
1485impl Default for PerformanceTargets {
1486    fn default() -> Self {
1487        Self {
1488            throughput: Some(1000.0),
1489            latency: Some(Duration::from_millis(10)),
1490            resource_utilization: Some(80.0),
1491            energy_efficiency: Some(0.8),
1492            cost_efficiency: Some(0.7),
1493            reliability: Some(0.999),
1494        }
1495    }
1496}
1497
1498impl Default for ObjectiveWeights {
1499    fn default() -> Self {
1500        Self {
1501            throughput: 0.3,
1502            latency: 0.2,
1503            resource_utilization: 0.2,
1504            energy_efficiency: 0.1,
1505            cost: 0.1,
1506            reliability: 0.05,
1507            stability: 0.05,
1508        }
1509    }
1510}
1511
1512impl Default for PerformanceMetrics {
1513    fn default() -> Self {
1514        Self {
1515            current_throughput: 0.0,
1516            current_latency: Duration::from_millis(0),
1517            resource_utilization: ResourceUtilizationMetrics::default(),
1518            energy_metrics: EnergyMetrics::default(),
1519            cache_metrics: CacheMetrics::default(),
1520            network_metrics: NetworkPerformanceMetrics::default(),
1521            pipeline_metrics: PipelineMetrics::default(),
1522            quality_metrics: QualityMetrics::default(),
1523            timestamp: SystemTime::now(),
1524        }
1525    }
1526}
1527
1528impl Default for ResourceUtilizationMetrics {
1529    fn default() -> Self {
1530        Self {
1531            cpu_utilization: 0.0,
1532            memory_utilization: 0.0,
1533            gpu_utilization: None,
1534            storage_utilization: 0.0,
1535            network_utilization: 0.0,
1536            efficiency_score: 0.0,
1537        }
1538    }
1539}
1540
1541impl Default for EnergyMetrics {
1542    fn default() -> Self {
1543        Self {
1544            total_power: 0.0,
1545            cpu_power: 0.0,
1546            gpu_power: None,
1547            memory_power: 0.0,
1548            storage_power: 0.0,
1549            cooling_power: 0.0,
1550            energy_efficiency: 0.0,
1551        }
1552    }
1553}
1554
1555impl Default for CacheMetrics {
1556    fn default() -> Self {
1557        Self {
1558            l1_hit_rate: 0.0,
1559            l2_hit_rate: 0.0,
1560            l3_hit_rate: 0.0,
1561            memory_cache_hit_rate: 0.0,
1562            storage_cache_hit_rate: 0.0,
1563            average_access_time: Duration::from_nanos(0),
1564        }
1565    }
1566}
1567
1568impl Default for NetworkPerformanceMetrics {
1569    fn default() -> Self {
1570        Self {
1571            bandwidth_utilization: 0.0,
1572            average_latency: Duration::from_millis(0),
1573            packet_loss_rate: 0.0,
1574            jitter: Duration::from_millis(0),
1575            connection_efficiency: 0.0,
1576        }
1577    }
1578}
1579
1580impl Default for PipelineMetrics {
1581    fn default() -> Self {
1582        Self {
1583            pipeline_throughput: 0.0,
1584            stage_utilization: Vec::new(),
1585            pipeline_efficiency: 0.0,
1586            bottleneck_stages: Vec::new(),
1587            average_pipeline_latency: Duration::from_millis(0),
1588        }
1589    }
1590}
1591
1592impl Default for QualityMetrics {
1593    fn default() -> Self {
1594        Self {
1595            error_rate: 0.0,
1596            success_rate: 1.0,
1597            retry_rate: 0.0,
1598            data_quality_score: 1.0,
1599            availability: 1.0,
1600        }
1601    }
1602}
1603
1604impl Default for OptimizerState {
1605    fn default() -> Self {
1606        Self {
1607            active: false,
1608            phase: OptimizationPhase::Idle,
1609            iterations_completed: 0,
1610            last_optimization: SystemTime::now(),
1611            optimization_score: 0.0,
1612            converged: false,
1613        }
1614    }
1615}
1616
1617impl Default for OptimizerMetrics {
1618    fn default() -> Self {
1619        Self {
1620            total_optimizations: 0,
1621            successful_optimizations: 0,
1622            failed_optimizations: 0,
1623            average_improvement: 0.0,
1624            optimization_frequency: 0.0,
1625            time_spent: Duration::from_secs(0),
1626        }
1627    }
1628}
1629
1630impl Default for PerformanceBaselines {
1631    fn default() -> Self {
1632        Self {
1633            baseline_metrics: PerformanceSnapshot::default(),
1634            best_performance: PerformanceSnapshot::default(),
1635            worst_performance: PerformanceSnapshot::default(),
1636            baseline_time: SystemTime::now(),
1637        }
1638    }
1639}
1640
1641impl Default for PerformanceSnapshot {
1642    fn default() -> Self {
1643        Self {
1644            timestamp: SystemTime::now(),
1645            throughput: 0.0,
1646            latency: Duration::from_millis(0),
1647            resource_utilization: 0.0,
1648            energy_consumption: 0.0,
1649            error_rate: 0.0,
1650            cost_rate: 0.0,
1651        }
1652    }
1653}
1654
1655impl Default for ActualImpact {
1656    fn default() -> Self {
1657        Self {
1658            throughput_improvement: 0.0,
1659            latency_reduction: 0.0,
1660            resource_savings: 0.0,
1661            energy_savings: 0.0,
1662            cost_savings: 0.0,
1663            side_effects: Vec::new(),
1664        }
1665    }
1666}
1667
1668impl Default for TrendData {
1669    fn default() -> Self {
1670        Self {
1671            direction: TrendDirection::Stable,
1672            magnitude: 0.0,
1673            confidence: 0.0,
1674            prediction: 0.0,
1675            variance: 0.0,
1676        }
1677    }
1678}
1679
1680impl Default for ThroughputOptimizerState {
1681    fn default() -> Self {
1682        Self {
1683            current_parallelism: 1,
1684            current_batch_size: 10,
1685            current_throughput: 0.0,
1686            target_gap: 0.0,
1687            optimization_attempts: 0,
1688        }
1689    }
1690}
1691
1692impl Default for LatencyOptimizerState {
1693    fn default() -> Self {
1694        Self {
1695            current_latency: Duration::from_millis(0),
1696            p95_latency: Duration::from_millis(0),
1697            p99_latency: Duration::from_millis(0),
1698            target_gap: Duration::from_millis(0),
1699            jitter: Duration::from_millis(0),
1700        }
1701    }
1702}
1703
1704impl Default for EnergyOptimizerState {
1705    fn default() -> Self {
1706        Self {
1707            current_power: 0.0,
1708            current_efficiency: 0.0,
1709            thermal_state: ThermalState::Cool,
1710            power_mode: PowerMode::Balanced,
1711        }
1712    }
1713}
1714
1715impl Default for PredictiveOptimizerState {
1716    fn default() -> Self {
1717        Self {
1718            models_trained: 0,
1719            training_data_points: 0,
1720            predictions_made: 0,
1721            average_accuracy: 0.0,
1722            last_model_update: SystemTime::now(),
1723        }
1724    }
1725}
1726
1727// External dependencies
1728extern crate uuid;
1729
1730#[allow(non_snake_case)]
1731#[cfg(test)]
1732mod tests {
1733    use super::*;
1734
1735    #[test]
1736    fn test_performance_optimizer_creation() {
1737        let result = PerformanceOptimizer::new();
1738        assert!(result.is_ok());
1739    }
1740
1741    #[test]
1742    fn test_throughput_optimizer() {
1743        let config = ThroughputOptimizerConfig {
1744            target_throughput: 1000.0,
1745            strategy: ThroughputStrategy::MaxParallel,
1746            batch_size_optimization: true,
1747            pipeline_optimization: true,
1748            resource_scaling: true,
1749            load_balancing: true,
1750            max_parallelism: 10,
1751        };
1752
1753        let result = ThroughputOptimizer::new(config);
1754        assert!(result.is_ok());
1755
1756        let optimizer = result.unwrap();
1757        assert_eq!(optimizer.name(), "ThroughputOptimizer");
1758        assert_eq!(optimizer.domain(), OptimizationDomain::Throughput);
1759    }
1760
1761    #[test]
1762    fn test_optimization_objectives() {
1763        let objectives = vec![
1764            OptimizationObjective::Throughput,
1765            OptimizationObjective::Latency,
1766            OptimizationObjective::ResourceUtilization,
1767            OptimizationObjective::EnergyEfficiency,
1768        ];
1769
1770        for objective in objectives {
1771            assert!(matches!(objective, _)); // Accept any OptimizationObjective variant
1772        }
1773    }
1774
1775    #[test]
1776    fn test_performance_metrics() {
1777        let metrics = PerformanceMetrics::default();
1778        assert_eq!(metrics.current_throughput, 0.0);
1779        assert_eq!(metrics.current_latency, Duration::from_millis(0));
1780        assert_eq!(metrics.resource_utilization.cpu_utilization, 0.0);
1781    }
1782
1783    #[test]
1784    fn test_optimization_constraints() {
1785        let constraints = OptimizationConstraints::default();
1786        assert_eq!(constraints.max_latency, Some(Duration::from_millis(100)));
1787        assert_eq!(constraints.min_throughput, Some(100.0));
1788        assert_eq!(constraints.min_reliability, Some(0.99));
1789    }
1790
1791    #[test]
1792    fn test_objective_weights() {
1793        let weights = ObjectiveWeights::default();
1794        let total_weight = weights.throughput
1795            + weights.latency
1796            + weights.resource_utilization
1797            + weights.energy_efficiency
1798            + weights.cost
1799            + weights.reliability
1800            + weights.stability;
1801        assert!((total_weight - 1.0).abs() < 0.001); // Should sum to 1.0
1802    }
1803
1804    #[test]
1805    fn test_trend_directions() {
1806        let directions = vec![
1807            TrendDirection::Improving,
1808            TrendDirection::Degrading,
1809            TrendDirection::Stable,
1810            TrendDirection::Oscillating,
1811            TrendDirection::Unknown,
1812        ];
1813
1814        for direction in directions {
1815            assert!(matches!(direction, _)); // Accept any TrendDirection variant
1816        }
1817    }
1818
1819    #[test]
1820    fn test_optimizer_state() {
1821        let state = OptimizerState::default();
1822        assert!(!state.active);
1823        assert_eq!(state.phase, OptimizationPhase::Idle);
1824        assert_eq!(state.iterations_completed, 0);
1825        assert!(!state.converged);
1826    }
1827
1828    #[test]
1829    fn test_recommendation_priority() {
1830        assert!(RecommendationPriority::Critical > RecommendationPriority::High);
1831        assert!(RecommendationPriority::High > RecommendationPriority::Medium);
1832        assert!(RecommendationPriority::Medium > RecommendationPriority::Low);
1833    }
1834
1835    #[test]
1836    fn test_thermal_states() {
1837        let states = vec![
1838            ThermalState::Cool,
1839            ThermalState::Warm,
1840            ThermalState::Hot,
1841            ThermalState::Critical,
1842        ];
1843
1844        for state in states {
1845            assert!(matches!(state, _)); // Accept any ThermalState variant
1846        }
1847    }
1848
1849    #[tokio::test]
1850    async fn test_optimization_iteration() {
1851        let mut optimizer = PerformanceOptimizer::new().unwrap();
1852        optimizer.initialize().unwrap();
1853
1854        // Add a throughput optimizer
1855        let throughput_config = ThroughputOptimizerConfig {
1856            target_throughput: 1000.0,
1857            strategy: ThroughputStrategy::MaxParallel,
1858            batch_size_optimization: true,
1859            pipeline_optimization: true,
1860            resource_scaling: true,
1861            load_balancing: true,
1862            max_parallelism: 10,
1863        };
1864        let throughput_optimizer = ThroughputOptimizer::new(throughput_config).unwrap();
1865        optimizer
1866            .add_optimizer(Box::new(throughput_optimizer))
1867            .unwrap();
1868
1869        // Test a single optimization iteration
1870        let result = optimizer.optimization_iteration().await;
1871        assert!(result.is_ok());
1872    }
1873}