pub struct MetaLearningPipeline<S = Untrained> { /* private fields */ }Expand description
Meta-learning pipeline component
Implementations§
Source§impl MetaLearningPipeline<Untrained>
impl MetaLearningPipeline<Untrained>
Sourcepub fn new(base_estimator: Box<dyn PipelinePredictor>) -> Self
pub fn new(base_estimator: Box<dyn PipelinePredictor>) -> Self
Create a new meta-learning pipeline
Sourcepub fn experience_storage(self, storage: ExperienceStorage) -> Self
pub fn experience_storage(self, storage: ExperienceStorage) -> Self
Set the experience storage
Sourcepub fn adaptation_strategy(self, strategy: AdaptationStrategy) -> Self
pub fn adaptation_strategy(self, strategy: AdaptationStrategy) -> Self
Set the adaptation strategy
Sourcepub fn meta_parameters(self, params: HashMap<String, f64>) -> Self
pub fn meta_parameters(self, params: HashMap<String, f64>) -> Self
Set meta-parameters
Sourcepub fn add_experience(&mut self, experience: Experience)
pub fn add_experience(&mut self, experience: Experience)
Add an experience to the storage
Source§impl MetaLearningPipeline<MetaLearningPipelineTrained>
impl MetaLearningPipeline<MetaLearningPipelineTrained>
Sourcepub fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>>
pub fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>>
Predict using the fitted meta-learning pipeline
Sourcepub fn adapt_to_task(
&mut self,
task_id: String,
x: &ArrayView2<'_, Float>,
y: &ArrayView1<'_, Float>,
) -> SklResult<()>
pub fn adapt_to_task( &mut self, task_id: String, x: &ArrayView2<'_, Float>, y: &ArrayView1<'_, Float>, ) -> SklResult<()>
Adapt to a new task with limited data
Sourcepub fn experience_storage(&self) -> &ExperienceStorage
pub fn experience_storage(&self) -> &ExperienceStorage
Get the experience storage
Sourcepub fn meta_parameters(&self) -> &HashMap<String, f64>
pub fn meta_parameters(&self) -> &HashMap<String, f64>
Get the current meta-parameters
Trait Implementations§
Source§impl<S: Debug> Debug for MetaLearningPipeline<S>
impl<S: Debug> Debug for MetaLearningPipeline<S>
Source§impl Estimator for MetaLearningPipeline<Untrained>
impl Estimator for MetaLearningPipeline<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, Option<&ArrayBase<ViewRepr<&f64>, Dim<[usize; 1]>>>> for MetaLearningPipeline<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, Option<&ArrayBase<ViewRepr<&f64>, Dim<[usize; 1]>>>> for MetaLearningPipeline<Untrained>
Source§type Fitted = MetaLearningPipeline<MetaLearningPipelineTrained>
type Fitted = MetaLearningPipeline<MetaLearningPipelineTrained>
The fitted model type
Source§fn fit(
self,
x: &ArrayView2<'_, Float>,
y: &Option<&ArrayView1<'_, Float>>,
) -> SklResult<Self::Fitted>
fn fit( self, x: &ArrayView2<'_, Float>, y: &Option<&ArrayView1<'_, Float>>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<S> Freeze for MetaLearningPipeline<S>where
S: Freeze,
impl<S = Untrained> !RefUnwindSafe for MetaLearningPipeline<S>
impl<S> Send for MetaLearningPipeline<S>where
S: Send,
impl<S> Sync for MetaLearningPipeline<S>where
S: Sync,
impl<S> Unpin for MetaLearningPipeline<S>where
S: Unpin,
impl<S = Untrained> !UnwindSafe for MetaLearningPipeline<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features