pub struct TransformedTargetRegressor<S = Untrained> { /* private fields */ }Expand description
§Examples
use sklears_compose::TransformedTargetRegressor;
use scirs2_core::ndarray::array;
let X = array![[1.0], [2.0], [3.0]];
let y = array![1.0, 4.0, 9.0];Implementations§
Source§impl TransformedTargetRegressor<Untrained>
impl TransformedTargetRegressor<Untrained>
Sourcepub fn new(regressor: Box<dyn PipelinePredictor>) -> Self
pub fn new(regressor: Box<dyn PipelinePredictor>) -> Self
Create a new TransformedTargetRegressor
Sourcepub fn transformer(
self,
transformer: Box<dyn for<'a> Transform<ArrayView1<'a, Float>, Array1<f64>> + Send + Sync>,
) -> Self
pub fn transformer( self, transformer: Box<dyn for<'a> Transform<ArrayView1<'a, Float>, Array1<f64>> + Send + Sync>, ) -> Self
Set the transformer
Sourcepub fn func(self, func: fn(&ArrayView1<'_, Float>) -> Array1<f64>) -> Self
pub fn func(self, func: fn(&ArrayView1<'_, Float>) -> Array1<f64>) -> Self
Set transformation function
Sourcepub fn inverse_func(
self,
inverse_func: fn(&ArrayView1<'_, Float>) -> Array1<f64>,
) -> Self
pub fn inverse_func( self, inverse_func: fn(&ArrayView1<'_, Float>) -> Array1<f64>, ) -> Self
Set inverse transformation function
Sourcepub fn check_inverse(self, check: bool) -> Self
pub fn check_inverse(self, check: bool) -> Self
Set whether to check inverse transform
Source§impl TransformedTargetRegressor<TransformedTargetRegressorTrained>
impl TransformedTargetRegressor<TransformedTargetRegressorTrained>
Sourcepub fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>>
pub fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<f64>>
Predict using the fitted regressor and inverse transform
Sourcepub fn regressor(&self) -> &dyn PipelinePredictor
pub fn regressor(&self) -> &dyn PipelinePredictor
Get the fitted regressor
Trait Implementations§
Source§impl Estimator for TransformedTargetRegressor<Untrained>
impl Estimator for TransformedTargetRegressor<Untrained>
Source§type Error = SklearsError
type Error = SklearsError
Error type for the estimator
Source§fn validate_config(&self) -> Result<(), SklearsError>
fn validate_config(&self) -> Result<(), SklearsError>
Validate estimator configuration with detailed error context
Source§fn check_compatibility(
&self,
n_samples: usize,
n_features: usize,
) -> Result<(), SklearsError>
fn check_compatibility( &self, n_samples: usize, n_features: usize, ) -> Result<(), SklearsError>
Check if estimator is compatible with given data dimensions
Source§fn metadata(&self) -> EstimatorMetadata
fn metadata(&self) -> EstimatorMetadata
Get estimator metadata
Source§impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, Option<&ArrayBase<ViewRepr<&f64>, Dim<[usize; 1]>>>> for TransformedTargetRegressor<Untrained>
impl Fit<ArrayBase<ViewRepr<&f64>, Dim<[usize; 2]>>, Option<&ArrayBase<ViewRepr<&f64>, Dim<[usize; 1]>>>> for TransformedTargetRegressor<Untrained>
Source§type Fitted = TransformedTargetRegressor<TransformedTargetRegressorTrained>
type Fitted = TransformedTargetRegressor<TransformedTargetRegressorTrained>
The fitted model type
Source§fn fit(
self,
x: &ArrayView2<'_, Float>,
y: &Option<&ArrayView1<'_, Float>>,
) -> SklResult<Self::Fitted>
fn fit( self, x: &ArrayView2<'_, Float>, y: &Option<&ArrayView1<'_, Float>>, ) -> SklResult<Self::Fitted>
Fit the model to the provided data with validation
Source§fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
fn fit_with_validation(
self,
x: &X,
y: &Y,
_x_val: Option<&X>,
_y_val: Option<&Y>,
) -> Result<(Self::Fitted, FitMetrics), SklearsError>where
Self: Sized,
Fit with custom validation and early stopping
Auto Trait Implementations§
impl<S> Freeze for TransformedTargetRegressor<S>where
S: Freeze,
impl<S = Untrained> !RefUnwindSafe for TransformedTargetRegressor<S>
impl<S> Send for TransformedTargetRegressor<S>where
S: Send,
impl<S> Sync for TransformedTargetRegressor<S>where
S: Sync,
impl<S> Unpin for TransformedTargetRegressor<S>where
S: Unpin,
impl<S = Untrained> !UnwindSafe for TransformedTargetRegressor<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> StableApi for Twhere
T: Estimator,
impl<T> StableApi for Twhere
T: Estimator,
Source§const STABLE_SINCE: &'static str = "0.1.0"
const STABLE_SINCE: &'static str = "0.1.0"
API version this type was stabilized in
Source§const HAS_EXPERIMENTAL_FEATURES: bool = false
const HAS_EXPERIMENTAL_FEATURES: bool = false
Whether this API has any experimental features