pub enum CalibrationMethod {
Show 56 variants
Sigmoid,
Isotonic,
Temperature,
HistogramBinning {
n_bins: usize,
},
BBQ {
min_bins: usize,
max_bins: usize,
},
Beta,
EnsembleTemperature {
n_estimators: usize,
},
OneVsOne,
MulticlassTemperature,
MatrixScaling,
Dirichlet {
concentration: Float,
},
LocalKNN {
k: usize,
},
LocalBinning {
n_bins: usize,
},
KDE,
AdaptiveKDE {
adaptation_factor: Float,
},
GaussianProcess,
VariationalGP {
n_inducing: usize,
},
ConformalSplit {
alpha: Float,
},
ConformalCross {
alpha: Float,
n_folds: usize,
},
ConformalJackknife {
alpha: Float,
},
BayesianModelAveraging {
n_models: usize,
},
VariationalInference {
learning_rate: Float,
n_samples: usize,
max_iter: usize,
},
MCMC {
n_samples: usize,
burn_in: usize,
step_size: Float,
},
HierarchicalBayesian,
DirichletProcess {
concentration: Float,
max_clusters: usize,
},
NonParametricGP {
kernel_type: String,
n_inducing: usize,
},
TimeSeries {
window_size: usize,
temporal_decay: Float,
},
Regression {
distributional: bool,
},
Ranking {
ranking_weight: Float,
listwise: bool,
},
Survival {
time_points: Vec<Float>,
handle_censoring: bool,
},
NeuralCalibration {
hidden_dims: Vec<usize>,
activation: String,
learning_rate: Float,
epochs: usize,
},
MixupCalibration {
base_method: String,
alpha: Float,
num_mixup_samples: usize,
},
DropoutCalibration {
hidden_dims: Vec<usize>,
dropout_prob: Float,
mc_samples: usize,
},
EnsembleNeuralCalibration {
n_estimators: usize,
hidden_dims: Vec<usize>,
},
StructuredPrediction {
structure_type: String,
use_mrf: bool,
temperature: Float,
},
OnlineSigmoid {
learning_rate: Float,
use_momentum: bool,
momentum: Float,
},
AdaptiveOnline {
window_size: usize,
retrain_frequency: usize,
drift_threshold: Float,
},
IncrementalUpdate {
update_frequency: usize,
learning_rate: Float,
use_smoothing: bool,
},
CalibrationAwareFocal {
gamma: Float,
temperature: Float,
learning_rate: Float,
max_epochs: usize,
},
CalibrationAwareCrossEntropy {
lambda: Float,
learning_rate: Float,
max_epochs: usize,
},
CalibrationAwareBrier {
learning_rate: Float,
max_epochs: usize,
},
CalibrationAwareECE {
n_bins: usize,
learning_rate: Float,
max_epochs: usize,
},
MultiModal {
n_modalities: usize,
fusion_strategy: String,
},
CrossModal {
adaptation_weights: Vec<Float>,
},
HeterogeneousEnsemble {
combination_strategy: String,
},
DomainAdaptation {
adaptation_strength: Float,
},
TransferLearning {
transfer_strategy: String,
learning_rate: Float,
finetune_iterations: usize,
},
TokenLevel {
max_seq_length: usize,
use_positional_encoding: bool,
},
SequenceLevel {
aggregation_method: String,
},
VerbalizedConfidence {
confidence_patterns: HashMap<String, Float>,
},
AttentionBased {
aggregation_method: String,
},
DPPlattScaling {
epsilon: Float,
delta: Float,
sensitivity: Float,
},
DPHistogramBinning {
n_bins: usize,
epsilon: Float,
delta: Float,
},
DPTemperatureScaling {
epsilon: Float,
delta: Float,
},
ContinualLearning {
base_method: String,
replay_strategy: String,
max_memory_size: usize,
regularization_strength: Float,
},
DifferentiableECE {
n_bins: usize,
learning_rate: Float,
max_iterations: usize,
tolerance: Float,
use_adaptive_bins: bool,
},
}Expand description
Calibration methods
Variants§
Sigmoid
Platt’s sigmoid method
Isotonic
Isotonic regression
Temperature
Temperature scaling
HistogramBinning
Histogram binning
BBQ
Bayesian binning into quantiles
Beta
Beta calibration
EnsembleTemperature
Ensemble temperature scaling
OneVsOne
One-vs-one multiclass calibration
MulticlassTemperature
Multiclass temperature scaling
MatrixScaling
Matrix scaling for multiclass
Dirichlet
Dirichlet calibration for multiclass
LocalKNN
Local k-NN calibration
LocalBinning
Local binning calibration
KDE
Kernel density estimation calibration
AdaptiveKDE
Adaptive KDE calibration
GaussianProcess
Gaussian process calibration
VariationalGP
Variational Gaussian process calibration
ConformalSplit
Split conformal prediction
ConformalCross
Cross-conformal prediction with K-fold CV
ConformalJackknife
Jackknife+ conformal prediction
BayesianModelAveraging
Bayesian model averaging calibration
VariationalInference
Variational inference calibration
MCMC
MCMC-based calibration
HierarchicalBayesian
Hierarchical Bayesian calibration
DirichletProcess
Dirichlet Process non-parametric calibration
NonParametricGP
Non-parametric Gaussian Process calibration
TimeSeries
Time series calibration with temporal dependencies
Regression
Regression calibration for continuous outputs
Ranking
Ranking calibration preserving order relationships
Survival
Survival analysis calibration for time-to-event data
NeuralCalibration
Neural network calibration layer
MixupCalibration
Mixup calibration with data augmentation
DropoutCalibration
Dropout-based uncertainty calibration
EnsembleNeuralCalibration
Ensemble neural calibration
StructuredPrediction
Structured prediction calibration for sequences, trees, graphs, and grids
OnlineSigmoid
Online sigmoid calibration for streaming data
AdaptiveOnline
Adaptive online calibration with concept drift detection
IncrementalUpdate
Incremental calibration updates without full retraining
CalibrationAwareFocal
Calibration-aware training with focal loss and temperature scaling
CalibrationAwareCrossEntropy
Calibration-aware training with cross-entropy and calibration regularization
CalibrationAwareBrier
Calibration-aware training with Brier score minimization
CalibrationAwareECE
Calibration-aware training with ECE minimization
MultiModal
Multi-modal calibration for predictions from multiple modalities
CrossModal
Cross-modal calibration for knowledge transfer between modalities
HeterogeneousEnsemble
Heterogeneous ensemble calibration combining different algorithmic families
DomainAdaptation
Domain adaptation calibration for transferring from source to target domain
TransferLearning
Transfer learning calibration using pre-trained models
TokenLevel
Token-level calibration for language models with position-aware calibration
SequenceLevel
Sequence-level calibration for entire generated sequences
VerbalizedConfidence
Verbalized confidence extraction from model outputs
AttentionBased
Attention-based calibration using attention weights as confidence indicators
DPPlattScaling
Differentially private Platt scaling with formal privacy guarantees
DPHistogramBinning
Differentially private histogram binning with Laplace mechanism
DPTemperatureScaling
Differentially private temperature scaling with exponential mechanism
ContinualLearning
Continual learning calibration for sequential task learning
Fields
DifferentiableECE
Differentiable ECE Meta-Calibration (Bohdal et al. 2023)
Trait Implementations§
Source§impl Clone for CalibrationMethod
impl Clone for CalibrationMethod
Source§fn clone(&self) -> CalibrationMethod
fn clone(&self) -> CalibrationMethod
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for CalibrationMethod
impl Debug for CalibrationMethod
Source§impl PartialEq for CalibrationMethod
impl PartialEq for CalibrationMethod
impl StructuralPartialEq for CalibrationMethod
Auto Trait Implementations§
impl Freeze for CalibrationMethod
impl RefUnwindSafe for CalibrationMethod
impl Send for CalibrationMethod
impl Sync for CalibrationMethod
impl Unpin for CalibrationMethod
impl UnwindSafe for CalibrationMethod
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more