CalibrationMethod

Enum CalibrationMethod 

Source
pub enum CalibrationMethod {
Show 56 variants Sigmoid, Isotonic, Temperature, HistogramBinning { n_bins: usize, }, BBQ { min_bins: usize, max_bins: usize, }, Beta, EnsembleTemperature { n_estimators: usize, }, OneVsOne, MulticlassTemperature, MatrixScaling, Dirichlet { concentration: Float, }, LocalKNN { k: usize, }, LocalBinning { n_bins: usize, }, KDE, AdaptiveKDE { adaptation_factor: Float, }, GaussianProcess, VariationalGP { n_inducing: usize, }, ConformalSplit { alpha: Float, }, ConformalCross { alpha: Float, n_folds: usize, }, ConformalJackknife { alpha: Float, }, BayesianModelAveraging { n_models: usize, }, VariationalInference { learning_rate: Float, n_samples: usize, max_iter: usize, }, MCMC { n_samples: usize, burn_in: usize, step_size: Float, }, HierarchicalBayesian, DirichletProcess { concentration: Float, max_clusters: usize, }, NonParametricGP { kernel_type: String, n_inducing: usize, }, TimeSeries { window_size: usize, temporal_decay: Float, }, Regression { distributional: bool, }, Ranking { ranking_weight: Float, listwise: bool, }, Survival { time_points: Vec<Float>, handle_censoring: bool, }, NeuralCalibration { hidden_dims: Vec<usize>, activation: String, learning_rate: Float, epochs: usize, }, MixupCalibration { base_method: String, alpha: Float, num_mixup_samples: usize, }, DropoutCalibration { hidden_dims: Vec<usize>, dropout_prob: Float, mc_samples: usize, }, EnsembleNeuralCalibration { n_estimators: usize, hidden_dims: Vec<usize>, }, StructuredPrediction { structure_type: String, use_mrf: bool, temperature: Float, }, OnlineSigmoid { learning_rate: Float, use_momentum: bool, momentum: Float, }, AdaptiveOnline { window_size: usize, retrain_frequency: usize, drift_threshold: Float, }, IncrementalUpdate { update_frequency: usize, learning_rate: Float, use_smoothing: bool, }, CalibrationAwareFocal { gamma: Float, temperature: Float, learning_rate: Float, max_epochs: usize, }, CalibrationAwareCrossEntropy { lambda: Float, learning_rate: Float, max_epochs: usize, }, CalibrationAwareBrier { learning_rate: Float, max_epochs: usize, }, CalibrationAwareECE { n_bins: usize, learning_rate: Float, max_epochs: usize, }, MultiModal { n_modalities: usize, fusion_strategy: String, }, CrossModal { adaptation_weights: Vec<Float>, }, HeterogeneousEnsemble { combination_strategy: String, }, DomainAdaptation { adaptation_strength: Float, }, TransferLearning { transfer_strategy: String, learning_rate: Float, finetune_iterations: usize, }, TokenLevel { max_seq_length: usize, use_positional_encoding: bool, }, SequenceLevel { aggregation_method: String, }, VerbalizedConfidence { confidence_patterns: HashMap<String, Float>, }, AttentionBased { aggregation_method: String, }, DPPlattScaling { epsilon: Float, delta: Float, sensitivity: Float, }, DPHistogramBinning { n_bins: usize, epsilon: Float, delta: Float, }, DPTemperatureScaling { epsilon: Float, delta: Float, }, ContinualLearning { base_method: String, replay_strategy: String, max_memory_size: usize, regularization_strength: Float, }, DifferentiableECE { n_bins: usize, learning_rate: Float, max_iterations: usize, tolerance: Float, use_adaptive_bins: bool, },
}
Expand description

Calibration methods

Variants§

§

Sigmoid

Platt’s sigmoid method

§

Isotonic

Isotonic regression

§

Temperature

Temperature scaling

§

HistogramBinning

Histogram binning

Fields

§n_bins: usize
§

BBQ

Bayesian binning into quantiles

Fields

§min_bins: usize
§max_bins: usize
§

Beta

Beta calibration

§

EnsembleTemperature

Ensemble temperature scaling

Fields

§n_estimators: usize
§

OneVsOne

One-vs-one multiclass calibration

§

MulticlassTemperature

Multiclass temperature scaling

§

MatrixScaling

Matrix scaling for multiclass

§

Dirichlet

Dirichlet calibration for multiclass

Fields

§concentration: Float
§

LocalKNN

Local k-NN calibration

Fields

§

LocalBinning

Local binning calibration

Fields

§n_bins: usize
§

KDE

Kernel density estimation calibration

§

AdaptiveKDE

Adaptive KDE calibration

Fields

§adaptation_factor: Float
§

GaussianProcess

Gaussian process calibration

§

VariationalGP

Variational Gaussian process calibration

Fields

§n_inducing: usize
§

ConformalSplit

Split conformal prediction

Fields

§alpha: Float
§

ConformalCross

Cross-conformal prediction with K-fold CV

Fields

§alpha: Float
§n_folds: usize
§

ConformalJackknife

Jackknife+ conformal prediction

Fields

§alpha: Float
§

BayesianModelAveraging

Bayesian model averaging calibration

Fields

§n_models: usize
§

VariationalInference

Variational inference calibration

Fields

§learning_rate: Float
§n_samples: usize
§max_iter: usize
§

MCMC

MCMC-based calibration

Fields

§n_samples: usize
§burn_in: usize
§step_size: Float
§

HierarchicalBayesian

Hierarchical Bayesian calibration

§

DirichletProcess

Dirichlet Process non-parametric calibration

Fields

§concentration: Float
§max_clusters: usize
§

NonParametricGP

Non-parametric Gaussian Process calibration

Fields

§kernel_type: String
§n_inducing: usize
§

TimeSeries

Time series calibration with temporal dependencies

Fields

§window_size: usize
§temporal_decay: Float
§

Regression

Regression calibration for continuous outputs

Fields

§distributional: bool
§

Ranking

Ranking calibration preserving order relationships

Fields

§ranking_weight: Float
§listwise: bool
§

Survival

Survival analysis calibration for time-to-event data

Fields

§time_points: Vec<Float>
§handle_censoring: bool
§

NeuralCalibration

Neural network calibration layer

Fields

§hidden_dims: Vec<usize>
§activation: String
§learning_rate: Float
§epochs: usize
§

MixupCalibration

Mixup calibration with data augmentation

Fields

§base_method: String
§alpha: Float
§num_mixup_samples: usize
§

DropoutCalibration

Dropout-based uncertainty calibration

Fields

§hidden_dims: Vec<usize>
§dropout_prob: Float
§mc_samples: usize
§

EnsembleNeuralCalibration

Ensemble neural calibration

Fields

§n_estimators: usize
§hidden_dims: Vec<usize>
§

StructuredPrediction

Structured prediction calibration for sequences, trees, graphs, and grids

Fields

§structure_type: String
§use_mrf: bool
§temperature: Float
§

OnlineSigmoid

Online sigmoid calibration for streaming data

Fields

§learning_rate: Float
§use_momentum: bool
§momentum: Float
§

AdaptiveOnline

Adaptive online calibration with concept drift detection

Fields

§window_size: usize
§retrain_frequency: usize
§drift_threshold: Float
§

IncrementalUpdate

Incremental calibration updates without full retraining

Fields

§update_frequency: usize
§learning_rate: Float
§use_smoothing: bool
§

CalibrationAwareFocal

Calibration-aware training with focal loss and temperature scaling

Fields

§gamma: Float
§temperature: Float
§learning_rate: Float
§max_epochs: usize
§

CalibrationAwareCrossEntropy

Calibration-aware training with cross-entropy and calibration regularization

Fields

§lambda: Float
§learning_rate: Float
§max_epochs: usize
§

CalibrationAwareBrier

Calibration-aware training with Brier score minimization

Fields

§learning_rate: Float
§max_epochs: usize
§

CalibrationAwareECE

Calibration-aware training with ECE minimization

Fields

§n_bins: usize
§learning_rate: Float
§max_epochs: usize
§

MultiModal

Multi-modal calibration for predictions from multiple modalities

Fields

§n_modalities: usize
§fusion_strategy: String
§

CrossModal

Cross-modal calibration for knowledge transfer between modalities

Fields

§adaptation_weights: Vec<Float>
§

HeterogeneousEnsemble

Heterogeneous ensemble calibration combining different algorithmic families

Fields

§combination_strategy: String
§

DomainAdaptation

Domain adaptation calibration for transferring from source to target domain

Fields

§adaptation_strength: Float
§

TransferLearning

Transfer learning calibration using pre-trained models

Fields

§transfer_strategy: String
§learning_rate: Float
§finetune_iterations: usize
§

TokenLevel

Token-level calibration for language models with position-aware calibration

Fields

§max_seq_length: usize
§use_positional_encoding: bool
§

SequenceLevel

Sequence-level calibration for entire generated sequences

Fields

§aggregation_method: String
§

VerbalizedConfidence

Verbalized confidence extraction from model outputs

Fields

§confidence_patterns: HashMap<String, Float>
§

AttentionBased

Attention-based calibration using attention weights as confidence indicators

Fields

§aggregation_method: String
§

DPPlattScaling

Differentially private Platt scaling with formal privacy guarantees

Fields

§epsilon: Float
§delta: Float
§sensitivity: Float
§

DPHistogramBinning

Differentially private histogram binning with Laplace mechanism

Fields

§n_bins: usize
§epsilon: Float
§delta: Float
§

DPTemperatureScaling

Differentially private temperature scaling with exponential mechanism

Fields

§epsilon: Float
§delta: Float
§

ContinualLearning

Continual learning calibration for sequential task learning

Fields

§base_method: String
§replay_strategy: String
§max_memory_size: usize
§regularization_strength: Float
§

DifferentiableECE

Differentiable ECE Meta-Calibration (Bohdal et al. 2023)

Fields

§n_bins: usize
§learning_rate: Float
§max_iterations: usize
§tolerance: Float
§use_adaptive_bins: bool

Trait Implementations§

Source§

impl Clone for CalibrationMethod

Source§

fn clone(&self) -> CalibrationMethod

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for CalibrationMethod

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for CalibrationMethod

Source§

fn eq(&self, other: &CalibrationMethod) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for CalibrationMethod

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V