1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//! This module contains inverse-kinematic functionality for the skelly crate.

use {
    super::{IkSolver, StepResult},
    crate::skelly::{Posture, Skelly},
    na::{Isometry3, Point3, RealField, Scalar, UnitQuaternion},
};

#[derive(Clone, Copy)]
struct IkGoal<T: Scalar> {
    bone: usize,
    position: Option<Point3<T>>,
    orientation: Option<UnitQuaternion<T>>,
}
pub struct FabrikSolver<T: Scalar> {
    epsilon: T,
    min_len: usize,
    goals: Vec<IkGoal<T>>,

    // temp vectors. saved to keep allocation.
    forward_queue: Vec<QueueItem<T>>,
    backward_queue: Vec<QueueItem<T>>,
    globals: Vec<Isometry3<T>>,
}

impl<T> Clone for FabrikSolver<T>
where
    T: Scalar,
{
    fn clone(&self) -> Self {
        FabrikSolver {
            epsilon: self.epsilon.clone(),
            min_len: self.min_len,
            goals: self.goals.clone(),
            forward_queue: Vec::new(),
            backward_queue: Vec::new(),
            globals: Vec::new(),
        }
    }

    fn clone_from(&mut self, source: &Self) {
        self.epsilon = source.epsilon.clone();
        self.min_len = source.min_len;
        self.goals = source.goals.clone();
    }
}

impl<T> IkSolver<T> for FabrikSolver<T>
where
    T: RealField,
{
    fn new(error: T) -> Self {
        Self::new(error)
    }

    fn solve_step<D>(&mut self, skelly: &Skelly<T, D>, posture: &mut Posture<T>) -> StepResult {
        self.solve_step(skelly, posture)
    }
}

impl<T> FabrikSolver<T>
where
    T: Scalar,
{
    pub fn new(epsilon: T) -> Self {
        FabrikSolver {
            goals: Vec::new(),
            min_len: 0,
            forward_queue: Vec::new(),
            backward_queue: Vec::new(),
            globals: Vec::new(),
            epsilon,
        }
    }

    pub fn new_one_way(epsilon: T) -> Self {
        FabrikSolver {
            goals: Vec::new(),
            min_len: 0,
            forward_queue: Vec::new(),
            backward_queue: Vec::new(),
            globals: Vec::new(),
            epsilon,
        }
    }

    pub fn set_position_goal(&mut self, bone: usize, position: Point3<T>)
    where
        T: Copy,
    {
        match self
            .goals
            .iter_mut()
            .skip_while(|goal| goal.bone != bone)
            .next()
        {
            Some(goal) => {
                if goal.bone == bone {
                    goal.position = Some(position);
                }
            }
            None => {
                self.min_len = self.min_len.min(bone + 1);
                self.goals.push(IkGoal {
                    bone,
                    position: Some(position),
                    orientation: None,
                })
            }
        }
    }

    pub fn set_orientation_goal(&mut self, bone: usize, orientation: UnitQuaternion<T>)
    where
        T: Copy,
    {
        match self
            .goals
            .iter_mut()
            .skip_while(|goal| goal.bone != bone)
            .next()
        {
            Some(goal) => {
                if goal.bone == bone {
                    goal.orientation = Some(orientation);
                }
            }
            None => {
                self.min_len = self.min_len.min(bone + 1);
                self.goals.push(IkGoal {
                    bone,
                    position: None,
                    orientation: Some(orientation),
                })
            }
        }
    }

    pub fn solve_step<D>(&mut self, skelly: &Skelly<T, D>, posture: &mut Posture<T>) -> StepResult
    where
        T: RealField,
    {
        assert!(posture.is_compatible(skelly));
        assert!(self.min_len <= skelly.len());

        self.globals.resize_with(skelly.len(), Isometry3::identity);
        posture.write_globals(skelly, &Isometry3::identity(), &mut self.globals);

        self.forward_queue.clear();
        self.backward_queue.clear();

        let mut total_error = T::zero();

        // enque effectors
        for goal in &self.goals {
            if let Some(position) = goal.position {
                let effector = Point3::from(self.globals[goal.bone].translation.vector);

                let error = position.coords.metric_distance(&effector.coords);
                total_error += error;

                if let Some(parent) = skelly.get_parent(goal.bone) {
                    enque(&mut self.forward_queue, parent, effector, position);
                }
            }
        }

        if total_error < self.epsilon {
            return StepResult::Solved;
        }

        // Traverse from effectors to roots.
        while let Some((bone, effector, target)) = deque(&mut self.forward_queue) {
            let global = &self.globals[bone];
            let inverse = global.inverse();

            let old_effector_local = inverse * effector;
            let target_local = inverse * target;

            let required_rotation =
                UnitQuaternion::rotation_between(&old_effector_local.coords, &target_local.coords)
                    .unwrap_or_else(UnitQuaternion::identity);

            posture.append_rotation(bone, required_rotation);

            let required_rotation_child = required_rotation.inverse();
            for child in skelly.iter_children(bone) {
                let new_orientation = required_rotation_child * posture.get_orientation(child);
                posture.set_orientation(child, new_orientation);
            }

            let new_effector_local = required_rotation * old_effector_local;
            let new_target_local = target_local - new_effector_local;

            if let Some(parent) = skelly.get_parent(bone) {
                enque(
                    &mut self.forward_queue,
                    parent,
                    Point3::from(global.translation.vector),
                    global * Point3::from(new_target_local),
                );
            } else {
                enque(
                    &mut self.backward_queue,
                    usize::MAX - bone,
                    global * Point3::from(new_target_local),
                    Point3::from(global.translation.vector),
                );
            }
        }

        // Traverse from roots to leafs.
        while let Some((bone, effector, target)) = deque(&mut self.backward_queue) {
            let bone = usize::MAX - bone;

            let mut count = T::zero();
            for _ in skelly.iter_children(bone) {
                count += T::one();
            }

            let mut required_rotation = UnitQuaternion::identity();
            for child in skelly.iter_children(bone) {
                let global = self.globals[bone] * posture.get_isometry(child).translation;
                let inverse = global.inverse();

                let old_effector_local = inverse * effector;
                let target_local = inverse * target;

                let partial_rotation = UnitQuaternion::rotation_between(
                    &old_effector_local.coords,
                    &target_local.coords,
                )
                .map(|q| q.powf(T::one() / count))
                .unwrap_or_else(UnitQuaternion::identity);

                required_rotation *= partial_rotation;
            }

            posture.append_rotation(bone, required_rotation);

            let required_rotation_child = required_rotation.inverse();
            for child in skelly.iter_children(bone) {
                let new_orientation = required_rotation_child * posture.get_orientation(child);
                posture.set_orientation(child, new_orientation);

                let global = self.globals[bone] * posture.get_isometry(child).translation;
                let inverse = global.inverse();

                let old_effector_local = inverse * effector;
                let target_local = inverse * target;

                let new_effector_local = required_rotation * old_effector_local;
                let new_target_local = target_local - new_effector_local;

                enque(
                    &mut self.backward_queue,
                    usize::MAX - child,
                    global * posture.get_isometry(child).rotation * Point3::from(new_target_local),
                    Point3::from(global.translation.vector),
                );
            }
        }

        StepResult::Unsolved
    }
}

struct QueueItem<T: Scalar> {
    bone: usize,
    effector: Point3<T>,
    target: Point3<T>,
}

fn enque<T>(queue: &mut Vec<QueueItem<T>>, bone: usize, effector: Point3<T>, target: Point3<T>)
where
    T: Scalar,
{
    let index = queue
        .binary_search_by(|item| item.bone.cmp(&bone))
        .unwrap_or_else(|x| x);

    queue.insert(
        index,
        QueueItem {
            bone,
            effector,
            target,
        },
    );
}

fn deque<T>(queue: &mut Vec<QueueItem<T>>) -> Option<(usize, Point3<T>, Point3<T>)>
where
    T: RealField,
{
    let first = queue.pop()?;
    let mut count = T::one();

    let mut effector_sum = first.effector.coords;
    let mut target_sum = first.target.coords;
    while let Some(item) = queue.pop() {
        if item.bone != first.bone {
            queue.push(item);
            break;
        }

        count += T::one();
        effector_sum += item.effector.coords;
        target_sum += item.target.coords;
    }

    let effector = Point3::from(effector_sum / count);
    let target = Point3::from(target_sum / count);

    Some((first.bone, effector, target))
}