sigma_types

Type Alias Finite

Source
pub type Finite<Input> = Sigma<Input, FiniteInvariant<Input>>;
Expand description

Finite terms (e.g. for floating points, not NaN, infinite, etc.).

Aliased Type§

struct Finite<Input> { /* private fields */ }

Trait Implementations§

Source§

impl<L: CanBeInfinite + Debug + Div<R, Output: CanBeInfinite + Debug>, R: CanBeInfinite + Debug> Div<Sigma<R, FiniteInvariant<R>>> for Finite<L>

Source§

type Output = Sigma<<L as Div<R>>::Output, FiniteInvariant<<L as Div<R>>::Output>>

The resulting type after applying the / operator.
Source§

fn div(self, rhs: Finite<R>) -> Self::Output

Performs the / operation. Read more
Source§

impl<L: CanBeInfinite + Debug + Mul<R, Output: CanBeInfinite + Debug>, R: CanBeInfinite + Debug> Mul<Sigma<R, FiniteInvariant<R>>> for Finite<L>

Source§

type Output = Sigma<<L as Mul<R>>::Output, FiniteInvariant<<L as Mul<R>>::Output>>

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: Finite<R>) -> Self::Output

Performs the * operation. Read more
Source§

impl<Raw: CanBeInfinite + Debug + Neg> Neg for Finite<Raw>
where Raw::Output: CanBeInfinite + Debug,

Source§

type Output = Sigma<<Raw as Neg>::Output, FiniteInvariant<<Raw as Neg>::Output>>

The resulting type after applying the - operator.
Source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
Source§

impl<Z: CanBeInfinite + One + Debug> One for Finite<Z>

Source§

const ONE: Self

Additive identity (i.e., one).
Source§

impl<Z: CanBeInfinite + Zero + Debug> Zero for Finite<Z>

Source§

const ZERO: Self

Additive identity (i.e., zero).