pub struct ValidKeyAmalgamation<'a, P, R, R2>{ /* private fields */ }Expand description
A KeyAmalgamation plus a Policy and a reference time.
In the same way that a ValidComponentAmalgamation extends a
ComponentAmalgamation, a ValidKeyAmalgamation extends a
KeyAmalgamation: a ValidKeyAmalgamation combines a
KeyAmalgamation, a Policy, and a reference time. This
allows it to implement the ValidAmalgamation trait, which
provides methods like ValidAmalgamation::binding_signature that require a
Policy and a reference time. Although KeyAmalgamation could
implement these methods by requiring that the caller explicitly
pass them in, embedding them in the ValidKeyAmalgamation helps
ensure that multipart operations, even those that span multiple
functions, use the same Policy and reference time.
A ValidKeyAmalgamation can be obtained by transforming a
KeyAmalgamation using ValidateAmalgamation::with_policy. A
KeyAmalgamationIter can also be changed to yield
ValidKeyAmalgamations.
A ValidKeyAmalgamation is guaranteed to come from a valid
certificate, and have a valid and live binding signature at the
specified reference time. Note: this only means that the binding
signatures are live; it says nothing about whether the
certificate or the Key is live and non-revoked. If you care
about those things, you need to check them separately.
§Examples:
Find all non-revoked, live, signing-capable keys:
use openpgp::policy::StandardPolicy;
use openpgp::types::RevocationStatus;
let p = &StandardPolicy::new();
// `with_policy` ensures that the certificate and any components
// that it returns have valid *binding signatures*. But, we still
// need to check that the certificate and `Key` are not revoked,
// and live.
//
// Note: `ValidKeyAmalgamation::revocation_status`, etc. use the
// embedded policy and timestamp. Even though we used `None` for
// the timestamp (i.e., now), they are guaranteed to use the same
// timestamp, because `with_policy` eagerly transforms it into
// the current time.
let cert = cert.with_policy(p, None)?;
if let RevocationStatus::Revoked(_revs) = cert.revocation_status() {
// Revoked by the certificate holder. (If we care about
// designated revokers, then we need to check those
// ourselves.)
} else if let Err(_err) = cert.alive() {
// Certificate was created in the future or is expired.
} else {
// `ValidCert::keys` returns `ValidKeyAmalgamation`s.
for ka in cert.keys() {
if let RevocationStatus::Revoked(_revs) = ka.revocation_status() {
// Revoked by the key owner. (If we care about
// designated revokers, then we need to check those
// ourselves.)
} else if let Err(_err) = ka.alive() {
// Key was created in the future or is expired.
} else if ! ka.for_signing() {
// We're looking for a signing-capable key, skip this one.
} else {
// Use it!
}
}
}Implementations§
Source§impl<'a, P> ValidKeyAmalgamation<'a, P, PrimaryRole, ()>where
P: KeyParts,
impl<'a, P> ValidKeyAmalgamation<'a, P, PrimaryRole, ()>where
P: KeyParts,
Sourcepub fn parts_into_public(self) -> ValidPrimaryKeyAmalgamation<'a, PublicParts>
pub fn parts_into_public(self) -> ValidPrimaryKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_as_public(
&'a self,
) -> &'a ValidPrimaryKeyAmalgamation<'a, PublicParts>
pub fn parts_as_public( &'a self, ) -> &'a ValidPrimaryKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_as_public_mut(
&'a mut self,
) -> &'a mut ValidPrimaryKeyAmalgamation<'a, PublicParts>
pub fn parts_as_public_mut( &'a mut self, ) -> &'a mut ValidPrimaryKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_into_secret(
self,
) -> Result<ValidPrimaryKeyAmalgamation<'a, SecretParts>>
pub fn parts_into_secret( self, ) -> Result<ValidPrimaryKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_as_secret(
&'a self,
) -> Result<&'a ValidPrimaryKeyAmalgamation<'a, SecretParts>>
pub fn parts_as_secret( &'a self, ) -> Result<&'a ValidPrimaryKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_as_secret_mut(
&'a mut self,
) -> Result<&'a mut ValidPrimaryKeyAmalgamation<'a, SecretParts>>
pub fn parts_as_secret_mut( &'a mut self, ) -> Result<&'a mut ValidPrimaryKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_into_unspecified(
self,
) -> ValidPrimaryKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_into_unspecified( self, ) -> ValidPrimaryKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Sourcepub fn parts_as_unspecified(
&'a self,
) -> &'a ValidPrimaryKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_as_unspecified( &'a self, ) -> &'a ValidPrimaryKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Sourcepub fn parts_as_unspecified_mut(
&'a mut self,
) -> &'a mut ValidPrimaryKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_as_unspecified_mut( &'a mut self, ) -> &'a mut ValidPrimaryKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Source§impl<'a, P> ValidKeyAmalgamation<'a, P, SubordinateRole, ()>where
P: KeyParts,
impl<'a, P> ValidKeyAmalgamation<'a, P, SubordinateRole, ()>where
P: KeyParts,
Sourcepub fn parts_into_public(
self,
) -> ValidSubordinateKeyAmalgamation<'a, PublicParts>
pub fn parts_into_public( self, ) -> ValidSubordinateKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_as_public(
&'a self,
) -> &'a ValidSubordinateKeyAmalgamation<'a, PublicParts>
pub fn parts_as_public( &'a self, ) -> &'a ValidSubordinateKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_as_public_mut(
&'a mut self,
) -> &'a mut ValidSubordinateKeyAmalgamation<'a, PublicParts>
pub fn parts_as_public_mut( &'a mut self, ) -> &'a mut ValidSubordinateKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_into_secret(
self,
) -> Result<ValidSubordinateKeyAmalgamation<'a, SecretParts>>
pub fn parts_into_secret( self, ) -> Result<ValidSubordinateKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_as_secret(
&'a self,
) -> Result<&'a ValidSubordinateKeyAmalgamation<'a, SecretParts>>
pub fn parts_as_secret( &'a self, ) -> Result<&'a ValidSubordinateKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_as_secret_mut(
&'a mut self,
) -> Result<&'a mut ValidSubordinateKeyAmalgamation<'a, SecretParts>>
pub fn parts_as_secret_mut( &'a mut self, ) -> Result<&'a mut ValidSubordinateKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_into_unspecified(
self,
) -> ValidSubordinateKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_into_unspecified( self, ) -> ValidSubordinateKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Sourcepub fn parts_as_unspecified(
&'a self,
) -> &'a ValidSubordinateKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_as_unspecified( &'a self, ) -> &'a ValidSubordinateKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Sourcepub fn parts_as_unspecified_mut(
&'a mut self,
) -> &'a mut ValidSubordinateKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_as_unspecified_mut( &'a mut self, ) -> &'a mut ValidSubordinateKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Source§impl<'a, P> ValidKeyAmalgamation<'a, P, UnspecifiedRole, bool>where
P: KeyParts,
impl<'a, P> ValidKeyAmalgamation<'a, P, UnspecifiedRole, bool>where
P: KeyParts,
Sourcepub fn parts_into_public(self) -> ValidErasedKeyAmalgamation<'a, PublicParts>
pub fn parts_into_public(self) -> ValidErasedKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_as_public(
&'a self,
) -> &'a ValidErasedKeyAmalgamation<'a, PublicParts>
pub fn parts_as_public( &'a self, ) -> &'a ValidErasedKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_as_public_mut(
&'a mut self,
) -> &'a mut ValidErasedKeyAmalgamation<'a, PublicParts>
pub fn parts_as_public_mut( &'a mut self, ) -> &'a mut ValidErasedKeyAmalgamation<'a, PublicParts>
Changes the key’s parts tag to PublicParts.
Sourcepub fn parts_into_secret(
self,
) -> Result<ValidErasedKeyAmalgamation<'a, SecretParts>>
pub fn parts_into_secret( self, ) -> Result<ValidErasedKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_as_secret(
&'a self,
) -> Result<&'a ValidErasedKeyAmalgamation<'a, SecretParts>>
pub fn parts_as_secret( &'a self, ) -> Result<&'a ValidErasedKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_as_secret_mut(
&'a mut self,
) -> Result<&'a mut ValidErasedKeyAmalgamation<'a, SecretParts>>
pub fn parts_as_secret_mut( &'a mut self, ) -> Result<&'a mut ValidErasedKeyAmalgamation<'a, SecretParts>>
Changes the key’s parts tag to SecretParts.
Sourcepub fn parts_into_unspecified(
self,
) -> ValidErasedKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_into_unspecified( self, ) -> ValidErasedKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Sourcepub fn parts_as_unspecified(
&'a self,
) -> &'a ValidErasedKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_as_unspecified( &'a self, ) -> &'a ValidErasedKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Sourcepub fn parts_as_unspecified_mut(
&'a mut self,
) -> &'a mut ValidErasedKeyAmalgamation<'a, UnspecifiedParts>
pub fn parts_as_unspecified_mut( &'a mut self, ) -> &'a mut ValidErasedKeyAmalgamation<'a, UnspecifiedParts>
Changes the key’s parts tag to UnspecifiedParts.
Source§impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>
impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>
Sourcepub fn cert(&self) -> &'a Cert
pub fn cert(&self) -> &'a Cert
Returns the component’s associated certificate.
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for k in cert.with_policy(p, None)?.keys() {
// It's not only an identical `Cert`, it's the same one.
assert!(std::ptr::eq(k.cert(), &cert));
}Sourcepub fn binding_signature(&self) -> &'a Signature
pub fn binding_signature(&self) -> &'a Signature
Returns the valid amalgamation’s active binding signature.
The active binding signature is the most recent, non-revoked
self-signature that is valid according to the policy and
alive at time t (creation time <= t, t < expiry). If
there are multiple such signatures then the signatures are
ordered by their MPIs interpreted as byte strings.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
// Display information about each User ID's current active
// binding signature (the `time` parameter is `None`), if any.
for ua in cert.with_policy(p, None)?.userids() {
eprintln!("{:?}", ua.binding_signature());
}Sourcepub fn amalgamation(&self) -> &KeyAmalgamation<'a, P, R, R2>
pub fn amalgamation(&self) -> &KeyAmalgamation<'a, P, R, R2>
Returns the valid amalgamation’s amalgamation.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
// Get a key amalgamation.
let ka = cert.primary_key();
// Validate it, yielding a valid key amalgamation.
let vka = ka.with_policy(p, None)?;
// And here we get the amalgamation back.
let ka2 = vka.amalgamation();
assert_eq!(&ka, ka2);Sourcepub fn bundle(&self) -> &'a ComponentBundle<Key<P, R>>
pub fn bundle(&self) -> &'a ComponentBundle<Key<P, R>>
Returns this amalgamation’s bundle.
Sourcepub fn component(&self) -> &'a Key<P, R>
pub fn component(&self) -> &'a Key<P, R>
Returns this amalgamation’s component.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
// Display some information about any unknown components.
for k in cert.with_policy(p, None)?.keys() {
eprintln!(" - {:?}", k.component());
}Sourcepub fn self_signatures(
&self,
) -> impl Iterator<Item = &'a Signature> + Send + Sync
pub fn self_signatures( &self, ) -> impl Iterator<Item = &'a Signature> + Send + Sync
Returns the component’s self-signatures.
The signatures are validated, and they are sorted by their creation time, most recent first.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for (i, ka) in cert.with_policy(p, None)?.keys().enumerate() {
eprintln!("Key #{} ({}) has {:?} self signatures",
i, ka.key().fingerprint(),
ka.self_signatures().count());
}Sourcepub fn certifications(
&self,
) -> impl Iterator<Item = &'a Signature> + Send + Sync
pub fn certifications( &self, ) -> impl Iterator<Item = &'a Signature> + Send + Sync
Returns the component’s third-party certifications.
The signatures are not validated. They are sorted by their creation time, most recent first.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for k in cert.with_policy(p, None)?.keys() {
eprintln!("Key {} has {:?} unverified, third-party certifications",
k.key().fingerprint(),
k.certifications().count());
}Sourcepub fn self_revocations(
&self,
) -> impl Iterator<Item = &'a Signature> + Send + Sync
pub fn self_revocations( &self, ) -> impl Iterator<Item = &'a Signature> + Send + Sync
Returns the component’s revocations that were issued by the certificate holder.
The revocations are validated, and they are sorted by their creation time, most recent first.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for k in cert.with_policy(p, None)?.keys() {
eprintln!("Key {} has {:?} revocation certificates.",
k.key().fingerprint(),
k.self_revocations().count());
}Sourcepub fn other_revocations(
&self,
) -> impl Iterator<Item = &'a Signature> + Send + Sync
pub fn other_revocations( &self, ) -> impl Iterator<Item = &'a Signature> + Send + Sync
Returns the component’s revocations that were issued by other certificates.
The revocations are not validated. They are sorted by their creation time, most recent first.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for k in cert.with_policy(p, None)?.keys() {
eprintln!("Key {} has {:?} unverified, third-party revocation certificates.",
k.key().fingerprint(),
k.other_revocations().count());
}Sourcepub fn signatures(&self) -> impl Iterator<Item = &'a Signature> + Send + Sync
pub fn signatures(&self) -> impl Iterator<Item = &'a Signature> + Send + Sync
Returns all of the component’s signatures.
Only the self-signatures are validated. The signatures are sorted first by type, then by creation time. The self revocations come first, then the self signatures, then any certification approval key signatures, certifications, and third-party revocations coming last. This function may return additional types of signatures that could be associated to this component.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for (i, ka) in cert.with_policy(p, None)?.keys().enumerate() {
eprintln!("Key #{} ({}) has {:?} signatures",
i, ka.key().fingerprint(),
ka.signatures().count());
}Source§impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>where
P: 'a + KeyParts,
R: 'a + KeyRole,
R2: Copy,
Self: ValidAmalgamation<'a, Key<P, R>> + PrimaryKey<'a, P, R>,
impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>where
P: 'a + KeyParts,
R: 'a + KeyRole,
R2: Copy,
Self: ValidAmalgamation<'a, Key<P, R>> + PrimaryKey<'a, P, R>,
Sourcepub fn alive(&self) -> Result<()>
pub fn alive(&self) -> Result<()>
Returns whether the key is alive as of the amalgamation’s reference time.
A ValidKeyAmalgamation is guaranteed to have a live binding
signature. This is independent of whether the component is
live.
If the certificate is not alive as of the reference time, no subkey can be alive.
This function considers both the binding signature and the direct key signature. Information in the binding signature takes precedence over the direct key signature. See Section 5.2.3.10 of RFC 9580.
For a definition of liveness, see the key_alive method.
§Examples
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
let ka = cert.primary_key().with_policy(p, None)?;
if let Err(_err) = ka.alive() {
// Not alive.
}Source§impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>
impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>
Sourcepub fn primary_key_binding_signature(&self) -> Option<&Signature>
pub fn primary_key_binding_signature(&self) -> Option<&Signature>
Returns the key’s primary key binding signature, if any.
The primary key binding signature is embedded inside a subkey binding signature. It is made by the subkey to indicate that it should be associated with the primary key. This prevents an attack in which an attacker creates a certificate, and associates the victim’s subkey with it thereby creating confusion about the certificate that issued a signature.
Not all keys have primary key binding signatures. First, primary keys don’t have them, because they don’t need them. Second, encrypt-capable subkeys don’t have them because they are not (usually) able to issue signatures.
§Examples
let vc = cert.with_policy(P, None)?;
assert!(vc.primary_key().primary_key_binding_signature().is_none());
// A signing key has to have a primary key binding signature.
for ka in vc.keys().for_signing() {
assert!(ka.primary_key_binding_signature().is_some());
}
// Encryption keys normally can't have a primary key binding
// signature, because they can't issue signatures.
for ka in vc.keys().for_transport_encryption() {
assert!(ka.primary_key_binding_signature().is_none());
}Source§impl<'a, P> ValidKeyAmalgamation<'a, P, PrimaryRole, ()>where
P: 'a + KeyParts,
impl<'a, P> ValidKeyAmalgamation<'a, P, PrimaryRole, ()>where
P: 'a + KeyParts,
Sourcepub fn set_expiration_time(
&self,
primary_signer: &mut dyn Signer,
expiration: Option<SystemTime>,
) -> Result<Vec<Signature>>
pub fn set_expiration_time( &self, primary_signer: &mut dyn Signer, expiration: Option<SystemTime>, ) -> Result<Vec<Signature>>
Creates signatures that cause the key to expire at the specified time.
This function creates new binding signatures that cause the key to expire at the specified time when integrated into the certificate. For the primary key, it is necessary to create a new self-signature for each non-revoked User ID, and to create a direct key signature. This is needed, because the primary User ID is first consulted when determining the primary key’s expiration time, and certificates can be distributed with a possibly empty subset of User IDs.
Setting a key’s expiry time means updating an existing binding
signature—when looking up information, only one binding
signature is normally considered, and we don’t want to drop
the other information stored in the current binding signature.
This function uses the binding signature determined by
ValidKeyAmalgamation’s policy and reference time for this.
§Examples
use std::time;
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
let vc = cert.with_policy(p, None)?;
// Assert that the primary key is not expired.
assert!(vc.primary_key().alive().is_ok());
// Make the primary key expire in a week.
let t = time::SystemTime::now()
+ time::Duration::from_secs(7 * 24 * 60 * 60);
// We assume that the secret key material is available, and not
// password protected.
let mut signer = vc.primary_key()
.key().clone().parts_into_secret()?.into_keypair()?;
let sigs = vc.primary_key().set_expiration_time(&mut signer, Some(t))?;
let cert = cert.insert_packets(sigs)?.0;
// The primary key isn't expired yet.
let vc = cert.with_policy(p, None)?;
assert!(vc.primary_key().alive().is_ok());
// But in two weeks, it will be...
let t = time::SystemTime::now()
+ time::Duration::from_secs(2 * 7 * 24 * 60 * 60);
let vc = cert.with_policy(p, t)?;
assert!(vc.primary_key().alive().is_err());Source§impl<'a, P> ValidKeyAmalgamation<'a, P, SubordinateRole, ()>where
P: 'a + KeyParts,
impl<'a, P> ValidKeyAmalgamation<'a, P, SubordinateRole, ()>where
P: 'a + KeyParts,
Sourcepub fn set_expiration_time(
&self,
primary_signer: &mut dyn Signer,
subkey_signer: Option<&mut dyn Signer>,
expiration: Option<SystemTime>,
) -> Result<Vec<Signature>>
pub fn set_expiration_time( &self, primary_signer: &mut dyn Signer, subkey_signer: Option<&mut dyn Signer>, expiration: Option<SystemTime>, ) -> Result<Vec<Signature>>
Creates signatures that cause the key to expire at the specified time.
This function creates new binding signatures that cause the
key to expire at the specified time when integrated into the
certificate. For subkeys, a single Signature is returned.
Setting a key’s expiry time means updating an existing binding
signature—when looking up information, only one binding
signature is normally considered, and we don’t want to drop
the other information stored in the current binding signature.
This function uses the binding signature determined by
ValidKeyAmalgamation’s policy and reference time for this.
When updating the expiration time of signing-capable subkeys,
we need to create a new primary key binding signature.
Therefore, we need a signer for the subkey. If
subkey_signer is None, and this is a signing-capable
subkey, this function fails with Error::InvalidArgument.
Likewise, this function fails if subkey_signer is not None
when updating the expiration of a non signing-capable subkey.
§Examples
use std::time;
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
let vc = cert.with_policy(p, None)?;
// Assert that the keys are not expired.
for ka in vc.keys() {
assert!(ka.alive().is_ok());
}
// Make the keys expire in a week.
let t = time::SystemTime::now()
+ time::Duration::from_secs(7 * 24 * 60 * 60);
// We assume that the secret key material is available, and not
// password protected.
let mut primary_signer = vc.primary_key()
.key().clone().parts_into_secret()?.into_keypair()?;
let mut signing_subkey_signer = vc.keys().for_signing().nth(0).unwrap()
.key().clone().parts_into_secret()?.into_keypair()?;
let mut sigs = Vec::new();
for ka in vc.keys() {
if ! ka.for_signing() {
// Non-signing-capable subkeys are easy to update.
sigs.append(&mut ka.set_expiration_time(&mut primary_signer,
None, Some(t))?);
} else {
// Signing-capable subkeys need to create a primary
// key binding signature with the subkey:
assert!(ka.set_expiration_time(&mut primary_signer,
None, Some(t)).is_err());
// Here, we need the subkey's signer:
sigs.append(&mut ka.set_expiration_time(&mut primary_signer,
Some(&mut signing_subkey_signer),
Some(t))?);
}
}
let cert = cert.insert_packets(sigs)?.0;
// They aren't expired yet.
let vc = cert.with_policy(p, None)?;
for ka in vc.keys() {
assert!(ka.alive().is_ok());
}
// But in two weeks, they will be...
let t = time::SystemTime::now()
+ time::Duration::from_secs(2 * 7 * 24 * 60 * 60);
let vc = cert.with_policy(p, t)?;
for ka in vc.keys() {
assert!(ka.alive().is_err());
}Source§impl<'a, P> ValidKeyAmalgamation<'a, P, UnspecifiedRole, bool>where
P: 'a + KeyParts,
impl<'a, P> ValidKeyAmalgamation<'a, P, UnspecifiedRole, bool>where
P: 'a + KeyParts,
Sourcepub fn set_expiration_time(
&self,
primary_signer: &mut dyn Signer,
subkey_signer: Option<&mut dyn Signer>,
expiration: Option<SystemTime>,
) -> Result<Vec<Signature>>
pub fn set_expiration_time( &self, primary_signer: &mut dyn Signer, subkey_signer: Option<&mut dyn Signer>, expiration: Option<SystemTime>, ) -> Result<Vec<Signature>>
Creates signatures that cause the key to expire at the specified time.
This function creates new binding signatures that cause the
key to expire at the specified time when integrated into the
certificate. For subkeys, only a single Signature is
returned. For the primary key, however, it is necessary to
create a new self-signature for each non-revoked User ID, and
to create a direct key signature. This is needed, because the
primary User ID is first consulted when determining the
primary key’s expiration time, and certificates can be
distributed with a possibly empty subset of User IDs.
Setting a key’s expiry time means updating an existing binding
signature—when looking up information, only one binding
signature is normally considered, and we don’t want to drop
the other information stored in the current binding signature.
This function uses the binding signature determined by
ValidKeyAmalgamation’s policy and reference time for this.
When updating the expiration time of signing-capable subkeys,
we need to create a new primary key binding signature.
Therefore, we need a signer for the subkey. If
subkey_signer is None, and this is a signing-capable
subkey, this function fails with Error::InvalidArgument.
Likewise, this function fails if subkey_signer is not None
when updating the expiration of the primary key, or a non
signing-capable subkey.
§Examples
use std::time;
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
let vc = cert.with_policy(p, None)?;
// Assert that the keys are not expired.
for ka in vc.keys() {
assert!(ka.alive().is_ok());
}
// Make the keys expire in a week.
let t = time::SystemTime::now()
+ time::Duration::from_secs(7 * 24 * 60 * 60);
// We assume that the secret key material is available, and not
// password protected.
let mut primary_signer = vc.primary_key()
.key().clone().parts_into_secret()?.into_keypair()?;
let mut signing_subkey_signer = vc.keys().for_signing().nth(0).unwrap()
.key().clone().parts_into_secret()?.into_keypair()?;
let mut sigs = Vec::new();
for ka in vc.keys() {
if ! ka.for_signing() {
// Non-signing-capable subkeys are easy to update.
sigs.append(&mut ka.set_expiration_time(&mut primary_signer,
None, Some(t))?);
} else {
// Signing-capable subkeys need to create a primary
// key binding signature with the subkey:
assert!(ka.set_expiration_time(&mut primary_signer,
None, Some(t)).is_err());
// Here, we need the subkey's signer:
sigs.append(&mut ka.set_expiration_time(&mut primary_signer,
Some(&mut signing_subkey_signer),
Some(t))?);
}
}
let cert = cert.insert_packets(sigs)?.0;
// They aren't expired yet.
let vc = cert.with_policy(p, None)?;
for ka in vc.keys() {
assert!(ka.alive().is_ok());
}
// But in two weeks, they will be...
let t = time::SystemTime::now()
+ time::Duration::from_secs(2 * 7 * 24 * 60 * 60);
let vc = cert.with_policy(p, t)?;
for ka in vc.keys() {
assert!(ka.alive().is_err());
}Source§impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>where
P: 'a + KeyParts,
R: 'a + KeyRole,
R2: Copy,
Self: ValidAmalgamation<'a, Key<P, R>> + ValidBindingSignature<'a, Key<P, R>>,
impl<'a, P, R, R2> ValidKeyAmalgamation<'a, P, R, R2>where
P: 'a + KeyParts,
R: 'a + KeyRole,
R2: Copy,
Self: ValidAmalgamation<'a, Key<P, R>> + ValidBindingSignature<'a, Key<P, R>>,
Sourcepub fn key_flags(&self) -> Option<KeyFlags>
pub fn key_flags(&self) -> Option<KeyFlags>
Returns the key’s Key Flags.
A Key’s Key Flags holds information about the key. As of
RFC 9580, this information is primarily concerned with the
key’s capabilities (e.g., whether it may be used for signing).
The other information that has been defined is: whether the
key has been split using something like SSS, and whether the
primary key material is held by multiple parties. In
practice, the latter two flags are ignored.
As per Section 5.2.3.10 of RFC 9580, when looking for the
Key Flags, the key’s binding signature is first consulted
(in the case of the primary Key, this is the binding signature
of the primary User ID). If the Key Flags subpacket is not
present, then the direct key signature is consulted.
Since the key flags are taken from the active self signature, a key’s flags may change depending on the policy and the reference time.
To increase compatibility with early v4 certificates, if there is no key flags subpacket on the considered signatures, we infer the key flags from the key’s role and public key algorithm.
§Examples
let ka = cert.primary_key();
println!("Primary Key's Key Flags: {:?}", ka.key_flags());Sourcepub fn has_any_key_flag<F>(&self, flags: F) -> bool
pub fn has_any_key_flag<F>(&self, flags: F) -> bool
Returns whether the key has at least one of the specified key flags.
The key flags are looked up as described in
ValidKeyAmalgamation::key_flags.
§Examples
Finds keys that may be used for transport encryption (data in motion) or storage encryption (data at rest):
use openpgp::policy::StandardPolicy;
use openpgp::types::KeyFlags;
let p = &StandardPolicy::new();
for ka in cert.keys().with_policy(p, None) {
if ka.has_any_key_flag(KeyFlags::empty()
.set_storage_encryption()
.set_transport_encryption())
{
// `ka` is encryption capable.
}
}Sourcepub fn for_certification(&self) -> bool
pub fn for_certification(&self) -> bool
Returns whether the key is certification capable.
Note: Section 10.1 of RFC 9580 says that the primary key is
certification capable independent of the Key Flags
subpacket:
In a V4 key, the primary key MUST be a key capable of certification.
This function only reflects what is stored in the Key Flags
packet; it does not implicitly set this flag. In practice,
there are keys whose primary key’s Key Flags do not have the
certification capable flag set. Some versions of netpgp, for
instance, create keys like this. Sequoia’s higher-level
functionality correctly handles these keys by always
considering the primary key to be certification capable.
Users of this interface should too.
The key flags are looked up as described in
ValidKeyAmalgamation::key_flags.
§Examples
Finds keys that are certification capable:
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for ka in cert.keys().with_policy(p, None) {
if ka.primary() || ka.for_certification() {
// `ka` is certification capable.
}
}Sourcepub fn for_signing(&self) -> bool
pub fn for_signing(&self) -> bool
Returns whether the key is signing capable.
The key flags are looked up as described in
ValidKeyAmalgamation::key_flags.
§Examples
Finds keys that are signing capable:
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for ka in cert.keys().with_policy(p, None) {
if ka.for_signing() {
// `ka` is signing capable.
}
}Sourcepub fn for_authentication(&self) -> bool
pub fn for_authentication(&self) -> bool
Returns whether the key is authentication capable.
The key flags are looked up as described in
ValidKeyAmalgamation::key_flags.
§Examples
Finds keys that are authentication capable:
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for ka in cert.keys().with_policy(p, None) {
if ka.for_authentication() {
// `ka` is authentication capable.
}
}Sourcepub fn for_storage_encryption(&self) -> bool
pub fn for_storage_encryption(&self) -> bool
Returns whether the key is storage-encryption capable.
OpenPGP distinguishes two types of encryption keys: those for storage (data at rest) and those for transport (data in transit). Most OpenPGP implementations, however, don’t distinguish between them in practice. Instead, when they create a new encryption key, they just set both flags. Likewise, when encrypting a message, it is not typically possible to indicate the type of protection that is needed. Sequoia supports creating keys with only one of these flags set, and makes it easy to select the right type of key when encrypting messages.
The key flags are looked up as described in
ValidKeyAmalgamation::key_flags.
§Examples
Finds keys that are storage-encryption capable:
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for ka in cert.keys().with_policy(p, None) {
if ka.for_storage_encryption() {
// `ka` is storage-encryption capable.
}
}Sourcepub fn for_transport_encryption(&self) -> bool
pub fn for_transport_encryption(&self) -> bool
Returns whether the key is transport-encryption capable.
OpenPGP distinguishes two types of encryption keys: those for storage (data at rest) and those for transport (data in transit). Most OpenPGP implementations, however, don’t distinguish between them in practice. Instead, when they create a new encryption key, they just set both flags. Likewise, when encrypting a message, it is not typically possible to indicate the type of protection that is needed. Sequoia supports creating keys with only one of these flags set, and makes it easy to select the right type of key when encrypting messages.
The key flags are looked up as described in
ValidKeyAmalgamation::key_flags.
§Examples
Finds keys that are transport-encryption capable:
use openpgp::policy::StandardPolicy;
let p = &StandardPolicy::new();
for ka in cert.keys().with_policy(p, None) {
if ka.for_transport_encryption() {
// `ka` is transport-encryption capable.
}
}Sourcepub fn key_validity_period(&self) -> Option<Duration>
pub fn key_validity_period(&self) -> Option<Duration>
Returns how long the key is live.
This returns how long the key is live relative to its creation
time. Use ValidKeyAmalgamation::key_expiration_time to
get the key’s absolute expiry time.
This function considers both the binding signature and the direct key signature. Information in the binding signature takes precedence over the direct key signature. See Section 5.2.3.10 of RFC 9580.
§Examples
use std::time;
use std::convert::TryInto;
use openpgp::policy::StandardPolicy;
use openpgp::types::Timestamp;
let p = &StandardPolicy::new();
// OpenPGP Timestamps have a one-second resolution. Since we
// want to round trip the time, round it down.
let now: Timestamp = time::SystemTime::now().try_into()?;
let now: time::SystemTime = now.try_into()?;
let a_week = time::Duration::from_secs(7 * 24 * 60 * 60);
let (cert, _) =
CertBuilder::general_purpose(Some("alice@example.org"))
.set_creation_time(now)
.set_validity_period(a_week)
.generate()?;
assert_eq!(cert.primary_key().with_policy(p, None)?.key_validity_period(),
Some(a_week));Sourcepub fn key_expiration_time(&self) -> Option<SystemTime>
pub fn key_expiration_time(&self) -> Option<SystemTime>
Returns the key’s expiration time.
If this function returns None, the key does not expire.
This returns the key’s expiration time. Use
ValidKeyAmalgamation::key_validity_period to get the
duration of the key’s lifetime.
This function considers both the binding signature and the direct key signature. Information in the binding signature takes precedence over the direct key signature. See Section 5.2.3.10 of RFC 9580.
§Examples
use std::time;
use std::convert::TryInto;
use openpgp::policy::StandardPolicy;
use openpgp::types::Timestamp;
let p = &StandardPolicy::new();
// OpenPGP Timestamps have a one-second resolution. Since we
// want to round trip the time, round it down.
let now: Timestamp = time::SystemTime::now().try_into()?;
let now: time::SystemTime = now.try_into()?;
let a_week = time::Duration::from_secs(7 * 24 * 60 * 60);
let a_week_later = now + a_week;
let (cert, _) =
CertBuilder::general_purpose(Some("alice@example.org"))
.set_creation_time(now)
.set_validity_period(a_week)
.generate()?;
assert_eq!(cert.primary_key().with_policy(p, None)?.key_expiration_time(),
Some(a_week_later));Trait Implementations§
Source§impl<'a, P, R, R2> Clone for ValidKeyAmalgamation<'a, P, R, R2>
impl<'a, P, R, R2> Clone for ValidKeyAmalgamation<'a, P, R, R2>
Source§fn clone(&self) -> ValidKeyAmalgamation<'a, P, R, R2>
fn clone(&self) -> ValidKeyAmalgamation<'a, P, R, R2>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more