seq_runtime/scheduler.rs
1//! Scheduler - Green Thread Management with May
2//!
3//! CSP-style concurrency for Seq using May coroutines.
4//! Each strand is a lightweight green thread that can communicate via channels.
5//!
6//! ## Non-Blocking Guarantee
7//!
8//! Channel operations (`send`, `receive`) use May's cooperative blocking and NEVER
9//! block OS threads. However, I/O operations (`write_line`, `read_line` in io.rs)
10//! currently use blocking syscalls. Future work will make all I/O non-blocking.
11//!
12//! ## Panic Behavior
13//!
14//! Functions panic on invalid input (null stacks, negative IDs, closed channels).
15//! In a production system, consider implementing error channels or Result-based
16//! error handling instead of panicking.
17
18use crate::stack::Stack;
19use crate::tagged_stack::StackValue;
20use may::coroutine;
21use std::sync::atomic::{AtomicU64, AtomicUsize, Ordering};
22use std::sync::{Condvar, Mutex, Once};
23
24static SCHEDULER_INIT: Once = Once::new();
25
26// Strand lifecycle tracking
27//
28// Design rationale:
29// - ACTIVE_STRANDS: Lock-free atomic counter for the hot path (spawn/complete)
30// Every strand increments on spawn, decrements on complete. This is extremely
31// fast (lock-free atomic ops) and suitable for high-frequency operations.
32//
33// - SHUTDOWN_CONDVAR/MUTEX: Event-driven synchronization for the cold path (shutdown wait)
34// Used only when waiting for all strands to complete (program shutdown).
35// Condvar provides event-driven wakeup instead of polling, which is critical
36// for a systems language - no CPU waste, proper OS-level blocking.
37//
38// Why not track JoinHandles?
39// Strands are like Erlang processes - potentially hundreds of thousands of concurrent
40// entities with independent lifecycles. Storing handles would require global mutable
41// state with synchronization overhead on the hot path. The counter + condvar approach
42// keeps the hot path lock-free while providing proper shutdown synchronization.
43pub static ACTIVE_STRANDS: AtomicUsize = AtomicUsize::new(0);
44static SHUTDOWN_CONDVAR: Condvar = Condvar::new();
45static SHUTDOWN_MUTEX: Mutex<()> = Mutex::new(());
46
47// Strand lifecycle statistics (for diagnostics)
48//
49// These counters provide observability into strand lifecycle without any locking.
50// All operations are lock-free atomic increments/loads.
51//
52// - TOTAL_SPAWNED: Monotonically increasing count of all strands ever spawned
53// - TOTAL_COMPLETED: Monotonically increasing count of all strands that completed
54// - PEAK_STRANDS: High-water mark of concurrent strands (helps detect strand leaks)
55//
56// Useful diagnostics:
57// - Currently running: ACTIVE_STRANDS
58// - Completed successfully: TOTAL_COMPLETED
59// - Potential leaks: TOTAL_SPAWNED - TOTAL_COMPLETED - ACTIVE_STRANDS > 0 (strands lost)
60// - Peak concurrency: PEAK_STRANDS
61pub static TOTAL_SPAWNED: AtomicU64 = AtomicU64::new(0);
62pub static TOTAL_COMPLETED: AtomicU64 = AtomicU64::new(0);
63pub static PEAK_STRANDS: AtomicUsize = AtomicUsize::new(0);
64
65// Unique strand ID generation
66static NEXT_STRAND_ID: AtomicU64 = AtomicU64::new(1);
67
68// =============================================================================
69// Lock-Free Strand Registry (only when diagnostics feature is enabled)
70// =============================================================================
71//
72// A fixed-size array of slots for tracking active strands without locks.
73// Each slot stores a strand ID (0 = free) and spawn timestamp.
74//
75// Design principles:
76// - Fixed size: No dynamic allocation, predictable memory footprint
77// - Lock-free: All operations use atomic CAS, no mutex contention
78// - Bounded: If registry is full, strands still run but aren't tracked
79// - Zero cost when not querying: Only diagnostics reads the registry
80//
81// Slot encoding:
82// - strand_id == 0: slot is free
83// - strand_id > 0: slot contains an active strand
84//
85// The registry size can be configured via SEQ_STRAND_REGISTRY_SIZE env var.
86// Default is 1024 slots, which is sufficient for most applications.
87//
88// When the "diagnostics" feature is disabled, the registry is not compiled,
89// eliminating the SystemTime::now() syscall and O(n) scans on every spawn.
90
91#[cfg(feature = "diagnostics")]
92/// Default strand registry size (number of trackable concurrent strands)
93const DEFAULT_REGISTRY_SIZE: usize = 1024;
94
95#[cfg(feature = "diagnostics")]
96/// A slot in the strand registry
97///
98/// Uses two atomics to store strand info without locks.
99/// A slot is free when strand_id == 0.
100pub struct StrandSlot {
101 /// Strand ID (0 = free, >0 = active strand)
102 pub strand_id: AtomicU64,
103 /// Spawn timestamp (seconds since UNIX epoch, for detecting stuck strands)
104 pub spawn_time: AtomicU64,
105}
106
107#[cfg(feature = "diagnostics")]
108impl StrandSlot {
109 const fn new() -> Self {
110 Self {
111 strand_id: AtomicU64::new(0),
112 spawn_time: AtomicU64::new(0),
113 }
114 }
115}
116
117#[cfg(feature = "diagnostics")]
118/// Lock-free strand registry
119///
120/// Provides O(n) registration (scan for free slot) and O(n) unregistration.
121/// This is acceptable because:
122/// 1. N is bounded (default 1024)
123/// 2. Registration/unregistration are infrequent compared to strand work
124/// 3. No locks means no contention, just atomic ops
125pub struct StrandRegistry {
126 slots: Box<[StrandSlot]>,
127 /// Number of slots that couldn't be registered (registry full)
128 pub overflow_count: AtomicU64,
129}
130
131#[cfg(feature = "diagnostics")]
132impl StrandRegistry {
133 /// Create a new registry with the given capacity
134 fn new(capacity: usize) -> Self {
135 let mut slots = Vec::with_capacity(capacity);
136 for _ in 0..capacity {
137 slots.push(StrandSlot::new());
138 }
139 Self {
140 slots: slots.into_boxed_slice(),
141 overflow_count: AtomicU64::new(0),
142 }
143 }
144
145 /// Register a strand, returning the slot index if successful
146 ///
147 /// Uses CAS to atomically claim a free slot.
148 /// Returns None if the registry is full (strand still runs, just not tracked).
149 pub fn register(&self, strand_id: u64) -> Option<usize> {
150 let spawn_time = std::time::SystemTime::now()
151 .duration_since(std::time::UNIX_EPOCH)
152 .map(|d| d.as_secs())
153 .unwrap_or(0);
154
155 // Scan for a free slot
156 for (idx, slot) in self.slots.iter().enumerate() {
157 // Set spawn time first, before claiming the slot
158 // This prevents a race where a reader sees strand_id != 0 but spawn_time == 0
159 // If we fail to claim the slot, the owner will overwrite this value anyway
160 slot.spawn_time.store(spawn_time, Ordering::Relaxed);
161
162 // Try to claim this slot (CAS from 0 to strand_id)
163 // AcqRel ensures the spawn_time write above is visible before strand_id becomes non-zero
164 if slot
165 .strand_id
166 .compare_exchange(0, strand_id, Ordering::AcqRel, Ordering::Relaxed)
167 .is_ok()
168 {
169 return Some(idx);
170 }
171 }
172
173 // Registry full - track overflow but strand still runs
174 self.overflow_count.fetch_add(1, Ordering::Relaxed);
175 None
176 }
177
178 /// Unregister a strand by ID
179 ///
180 /// Scans for the slot containing this strand ID and clears it.
181 /// Returns true if found and cleared, false if not found.
182 ///
183 /// Note: ABA problem is not a concern here because strand IDs are monotonically
184 /// increasing u64 values. ID reuse would require 2^64 spawns, which is practically
185 /// impossible (at 1 billion spawns/sec, it would take ~584 years).
186 pub fn unregister(&self, strand_id: u64) -> bool {
187 for slot in self.slots.iter() {
188 // Check if this slot contains our strand
189 if slot
190 .strand_id
191 .compare_exchange(strand_id, 0, Ordering::AcqRel, Ordering::Relaxed)
192 .is_ok()
193 {
194 // Successfully cleared the slot
195 slot.spawn_time.store(0, Ordering::Release);
196 return true;
197 }
198 }
199 false
200 }
201
202 /// Iterate over active strands (for diagnostics)
203 ///
204 /// Returns an iterator of (strand_id, spawn_time) for non-empty slots.
205 /// Note: This is a snapshot and may be slightly inconsistent due to concurrent updates.
206 pub fn active_strands(&self) -> impl Iterator<Item = (u64, u64)> + '_ {
207 self.slots.iter().filter_map(|slot| {
208 // Acquire on strand_id synchronizes with the Release in register()
209 let id = slot.strand_id.load(Ordering::Acquire);
210 if id > 0 {
211 // Relaxed is sufficient here - we've already synchronized via strand_id Acquire
212 // and spawn_time is written before strand_id in register()
213 let time = slot.spawn_time.load(Ordering::Relaxed);
214 Some((id, time))
215 } else {
216 None
217 }
218 })
219 }
220
221 /// Get the registry capacity
222 pub fn capacity(&self) -> usize {
223 self.slots.len()
224 }
225}
226
227// Global strand registry (lazy initialized)
228#[cfg(feature = "diagnostics")]
229static STRAND_REGISTRY: std::sync::OnceLock<StrandRegistry> = std::sync::OnceLock::new();
230
231/// Get or initialize the global strand registry
232#[cfg(feature = "diagnostics")]
233pub fn strand_registry() -> &'static StrandRegistry {
234 STRAND_REGISTRY.get_or_init(|| {
235 let size = std::env::var("SEQ_STRAND_REGISTRY_SIZE")
236 .ok()
237 .and_then(|s| s.parse().ok())
238 .unwrap_or(DEFAULT_REGISTRY_SIZE);
239 StrandRegistry::new(size)
240 })
241}
242
243/// Default coroutine stack size: 128KB (0x20000 bytes)
244/// Reduced from 1MB for better spawn performance (~16% faster in benchmarks).
245/// Can be overridden via SEQ_STACK_SIZE environment variable.
246const DEFAULT_STACK_SIZE: usize = 0x20000;
247
248/// Parse stack size from an optional string value.
249/// Returns the parsed size, or DEFAULT_STACK_SIZE if the value is missing, zero, or invalid.
250/// Prints a warning to stderr for invalid values.
251fn parse_stack_size(env_value: Option<String>) -> usize {
252 match env_value {
253 Some(val) => match val.parse::<usize>() {
254 Ok(0) => {
255 eprintln!(
256 "Warning: SEQ_STACK_SIZE=0 is invalid, using default {}",
257 DEFAULT_STACK_SIZE
258 );
259 DEFAULT_STACK_SIZE
260 }
261 Ok(size) => size,
262 Err(_) => {
263 eprintln!(
264 "Warning: SEQ_STACK_SIZE='{}' is not a valid number, using default {}",
265 val, DEFAULT_STACK_SIZE
266 );
267 DEFAULT_STACK_SIZE
268 }
269 },
270 None => DEFAULT_STACK_SIZE,
271 }
272}
273
274/// Default coroutine pool capacity.
275/// May reuses completed coroutine stacks from this pool to avoid allocations.
276/// Default of 1000 is often too small for spawn-heavy workloads.
277const DEFAULT_POOL_CAPACITY: usize = 10000;
278
279/// Initialize the scheduler.
280///
281/// # Safety
282/// Safe to call multiple times (idempotent via Once).
283/// Configures May coroutines with appropriate stack size for LLVM-generated code.
284#[unsafe(no_mangle)]
285pub unsafe extern "C" fn patch_seq_scheduler_init() {
286 SCHEDULER_INIT.call_once(|| {
287 // Configure stack size for coroutines
288 // Default is 128KB, reduced from 1MB for better spawn performance.
289 // Can be overridden via SEQ_STACK_SIZE environment variable (in bytes)
290 // Example: SEQ_STACK_SIZE=2097152 for 2MB
291 // Invalid values (non-numeric, zero) are warned and ignored.
292 let stack_size = parse_stack_size(std::env::var("SEQ_STACK_SIZE").ok());
293
294 // Configure coroutine pool capacity
295 // May reuses coroutine stacks from this pool to reduce allocation overhead.
296 // Default 10000 is 10x May's default (1000), better for spawn-heavy workloads.
297 // Can be overridden via SEQ_POOL_CAPACITY environment variable.
298 let pool_capacity = std::env::var("SEQ_POOL_CAPACITY")
299 .ok()
300 .and_then(|s| s.parse().ok())
301 .filter(|&v| v > 0)
302 .unwrap_or(DEFAULT_POOL_CAPACITY);
303
304 may::config()
305 .set_stack_size(stack_size)
306 .set_pool_capacity(pool_capacity);
307
308 // Install SIGQUIT handler for runtime diagnostics (kill -3)
309 #[cfg(feature = "diagnostics")]
310 crate::diagnostics::install_signal_handler();
311
312 // Install watchdog timer (if enabled via SEQ_WATCHDOG_SECS)
313 #[cfg(feature = "diagnostics")]
314 crate::watchdog::install_watchdog();
315 });
316}
317
318/// Run the scheduler and wait for all coroutines to complete
319///
320/// # Safety
321/// Returns the final stack (always null for now since May handles all scheduling).
322/// This function blocks until all spawned strands have completed.
323///
324/// Uses a condition variable for event-driven shutdown synchronization rather than
325/// polling. The mutex is only held during the wait protocol, not during strand
326/// execution, so there's no contention on the hot path.
327#[unsafe(no_mangle)]
328pub unsafe extern "C" fn patch_seq_scheduler_run() -> Stack {
329 let mut guard = SHUTDOWN_MUTEX.lock().expect(
330 "scheduler_run: shutdown mutex poisoned - strand panicked during shutdown synchronization",
331 );
332
333 // Wait for all strands to complete
334 // The condition variable will be notified when the last strand exits
335 while ACTIVE_STRANDS.load(Ordering::Acquire) > 0 {
336 guard = SHUTDOWN_CONDVAR
337 .wait(guard)
338 .expect("scheduler_run: condvar wait failed - strand panicked during shutdown wait");
339 }
340
341 // All strands have completed
342 std::ptr::null_mut()
343}
344
345/// Shutdown the scheduler
346///
347/// # Safety
348/// Safe to call. May doesn't require explicit shutdown, so this is a no-op.
349#[unsafe(no_mangle)]
350pub unsafe extern "C" fn patch_seq_scheduler_shutdown() {
351 // May doesn't require explicit shutdown
352 // This function exists for API symmetry with init
353}
354
355/// Spawn a strand (coroutine) with initial stack
356///
357/// # Safety
358/// - `entry` must be a valid function pointer that can safely execute on any thread
359/// - `initial_stack` must be either null or a valid pointer to a `StackValue` that:
360/// - Was heap-allocated (e.g., via Box)
361/// - Has a 'static lifetime or lives longer than the coroutine
362/// - Is safe to access from the spawned thread
363/// - The caller transfers ownership of `initial_stack` to the coroutine
364/// - Returns a unique strand ID (positive integer)
365///
366/// # Memory Management
367/// The spawned coroutine takes ownership of `initial_stack` and will automatically
368/// free the final stack returned by `entry` upon completion.
369#[unsafe(no_mangle)]
370pub unsafe extern "C" fn patch_seq_strand_spawn(
371 entry: extern "C" fn(Stack) -> Stack,
372 initial_stack: Stack,
373) -> i64 {
374 // For backwards compatibility, use null base (won't support nested spawns)
375 unsafe { patch_seq_strand_spawn_with_base(entry, initial_stack, std::ptr::null_mut()) }
376}
377
378/// Spawn a strand (coroutine) with initial stack and explicit stack base
379///
380/// This variant allows setting the STACK_BASE for the spawned strand, which is
381/// required for the child to perform operations like clone_stack (nested spawn).
382///
383/// # Safety
384/// - `entry` must be a valid function pointer that can safely execute on any thread
385/// - `initial_stack` must be a valid pointer to a `StackValue` array
386/// - `stack_base` must be the base of the stack (or null to skip setting STACK_BASE)
387/// - The caller transfers ownership of `initial_stack` to the coroutine
388/// - Returns a unique strand ID (positive integer)
389#[unsafe(no_mangle)]
390pub unsafe extern "C" fn patch_seq_strand_spawn_with_base(
391 entry: extern "C" fn(Stack) -> Stack,
392 initial_stack: Stack,
393 stack_base: Stack,
394) -> i64 {
395 // Generate unique strand ID
396 let strand_id = NEXT_STRAND_ID.fetch_add(1, Ordering::Relaxed);
397
398 // Increment active strand counter and track total spawned
399 let new_count = ACTIVE_STRANDS.fetch_add(1, Ordering::Release) + 1;
400 TOTAL_SPAWNED.fetch_add(1, Ordering::Relaxed);
401
402 // Update peak strands if this is a new high-water mark
403 // Uses a CAS loop to safely update the maximum without locks
404 // Uses Acquire/Release ordering for proper synchronization with diagnostics reads
405 let mut peak = PEAK_STRANDS.load(Ordering::Acquire);
406 while new_count > peak {
407 match PEAK_STRANDS.compare_exchange_weak(
408 peak,
409 new_count,
410 Ordering::Release,
411 Ordering::Relaxed,
412 ) {
413 Ok(_) => break,
414 Err(current) => peak = current,
415 }
416 }
417
418 // Register strand in the registry (for diagnostics visibility)
419 // If registry is full, strand still runs but isn't tracked
420 #[cfg(feature = "diagnostics")]
421 let _ = strand_registry().register(strand_id);
422
423 // Function pointers are already Send, no wrapper needed
424 let entry_fn = entry;
425
426 // Convert pointers to usize (which is Send)
427 // This is necessary because *mut T is !Send, but the caller guarantees thread safety
428 let stack_addr = initial_stack as usize;
429 let base_addr = stack_base as usize;
430
431 unsafe {
432 coroutine::spawn(move || {
433 // Reconstruct pointers from addresses
434 let stack_ptr = stack_addr as *mut StackValue;
435 let base_ptr = base_addr as *mut StackValue;
436
437 // Debug assertion: validate stack pointer alignment and reasonable address
438 debug_assert!(
439 stack_ptr.is_null()
440 || stack_addr.is_multiple_of(std::mem::align_of::<StackValue>()),
441 "Stack pointer must be null or properly aligned"
442 );
443 debug_assert!(
444 stack_ptr.is_null() || stack_addr > 0x1000,
445 "Stack pointer appears to be in invalid memory region (< 0x1000)"
446 );
447
448 // Set STACK_BASE for this strand if provided
449 // This enables nested spawns and other operations that need clone_stack
450 if !base_ptr.is_null() {
451 crate::stack::patch_seq_set_stack_base(base_ptr);
452 }
453
454 // Execute the entry function
455 let final_stack = entry_fn(stack_ptr);
456
457 // Clean up the final stack to prevent memory leak
458 free_stack(final_stack);
459
460 // Unregister strand from registry (uses captured strand_id)
461 #[cfg(feature = "diagnostics")]
462 strand_registry().unregister(strand_id);
463
464 // Decrement active strand counter first, then track completion
465 // This ordering ensures the invariant SPAWNED = COMPLETED + ACTIVE + lost
466 // is never violated from an external observer's perspective
467 // Use AcqRel to establish proper synchronization (both acquire and release barriers)
468 let prev_count = ACTIVE_STRANDS.fetch_sub(1, Ordering::AcqRel);
469
470 // Track completion after decrementing active count
471 TOTAL_COMPLETED.fetch_add(1, Ordering::Release);
472 if prev_count == 1 {
473 // We were the last strand - acquire mutex and signal shutdown
474 // The mutex must be held when calling notify to prevent missed wakeups
475 let _guard = SHUTDOWN_MUTEX.lock()
476 .expect("strand_spawn: shutdown mutex poisoned - strand panicked during shutdown notification");
477 SHUTDOWN_CONDVAR.notify_all();
478 }
479 });
480 }
481
482 strand_id as i64
483}
484
485/// Free a stack allocated by the runtime
486///
487/// With the tagged stack implementation, stack cleanup is handled differently.
488/// The contiguous array is freed when the TaggedStack is dropped.
489/// This function just resets the thread-local arena.
490///
491/// # Safety
492/// Stack pointer must be valid or null.
493fn free_stack(_stack: Stack) {
494 // With tagged stack, the array is freed when TaggedStack is dropped.
495 // We just need to reset the arena for thread-local strings.
496
497 // Reset the thread-local arena to free all arena-allocated strings
498 // This is safe because:
499 // - Any arena strings in Values have been dropped above
500 // - Global strings are unaffected (they have their own allocations)
501 // - Channel sends clone to global, so no cross-strand arena pointers
502 crate::arena::arena_reset();
503}
504
505/// Legacy spawn_strand function (kept for compatibility)
506///
507/// # Safety
508/// `entry` must be a valid function pointer that can safely execute on any thread.
509#[unsafe(no_mangle)]
510pub unsafe extern "C" fn patch_seq_spawn_strand(entry: extern "C" fn(Stack) -> Stack) {
511 unsafe {
512 patch_seq_strand_spawn(entry, std::ptr::null_mut());
513 }
514}
515
516/// Yield execution to allow other coroutines to run
517///
518/// # Safety
519/// Always safe to call from within a May coroutine.
520#[unsafe(no_mangle)]
521pub unsafe extern "C" fn patch_seq_yield_strand(stack: Stack) -> Stack {
522 coroutine::yield_now();
523 stack
524}
525
526/// Wait for all strands to complete
527///
528/// # Safety
529/// Always safe to call. Blocks until all spawned strands have completed.
530///
531/// Uses event-driven synchronization via condition variable - no polling overhead.
532#[unsafe(no_mangle)]
533pub unsafe extern "C" fn patch_seq_wait_all_strands() {
534 let mut guard = SHUTDOWN_MUTEX.lock()
535 .expect("wait_all_strands: shutdown mutex poisoned - strand panicked during shutdown synchronization");
536
537 // Wait for all strands to complete
538 // The condition variable will be notified when the last strand exits
539 while ACTIVE_STRANDS.load(Ordering::Acquire) > 0 {
540 guard = SHUTDOWN_CONDVAR
541 .wait(guard)
542 .expect("wait_all_strands: condvar wait failed - strand panicked during shutdown wait");
543 }
544}
545
546// Public re-exports with short names for internal use
547pub use patch_seq_scheduler_init as scheduler_init;
548pub use patch_seq_scheduler_run as scheduler_run;
549pub use patch_seq_scheduler_shutdown as scheduler_shutdown;
550pub use patch_seq_spawn_strand as spawn_strand;
551pub use patch_seq_strand_spawn as strand_spawn;
552pub use patch_seq_wait_all_strands as wait_all_strands;
553pub use patch_seq_yield_strand as yield_strand;
554
555#[cfg(test)]
556mod tests {
557 use super::*;
558 use crate::stack::push;
559 use crate::value::Value;
560 use std::sync::atomic::{AtomicU32, Ordering};
561
562 #[test]
563 fn test_spawn_strand() {
564 unsafe {
565 static COUNTER: AtomicU32 = AtomicU32::new(0);
566
567 extern "C" fn test_entry(_stack: Stack) -> Stack {
568 COUNTER.fetch_add(1, Ordering::SeqCst);
569 std::ptr::null_mut()
570 }
571
572 for _ in 0..100 {
573 spawn_strand(test_entry);
574 }
575
576 std::thread::sleep(std::time::Duration::from_millis(200));
577 assert_eq!(COUNTER.load(Ordering::SeqCst), 100);
578 }
579 }
580
581 #[test]
582 fn test_scheduler_init_idempotent() {
583 unsafe {
584 // Should be safe to call multiple times
585 scheduler_init();
586 scheduler_init();
587 scheduler_init();
588 }
589 }
590
591 #[test]
592 fn test_free_stack_null() {
593 // Freeing null should be a no-op
594 free_stack(std::ptr::null_mut());
595 }
596
597 #[test]
598 fn test_free_stack_valid() {
599 unsafe {
600 // Create a stack, then free it
601 let stack = push(crate::stack::alloc_test_stack(), Value::Int(42));
602 free_stack(stack);
603 // If we get here without crashing, test passed
604 }
605 }
606
607 #[test]
608 fn test_strand_spawn_with_stack() {
609 unsafe {
610 static COUNTER: AtomicU32 = AtomicU32::new(0);
611
612 extern "C" fn test_entry(stack: Stack) -> Stack {
613 COUNTER.fetch_add(1, Ordering::SeqCst);
614 // Return the stack as-is (caller will free it)
615 stack
616 }
617
618 let initial_stack = push(crate::stack::alloc_test_stack(), Value::Int(99));
619 strand_spawn(test_entry, initial_stack);
620
621 std::thread::sleep(std::time::Duration::from_millis(200));
622 assert_eq!(COUNTER.load(Ordering::SeqCst), 1);
623 }
624 }
625
626 #[test]
627 fn test_scheduler_shutdown() {
628 unsafe {
629 scheduler_init();
630 scheduler_shutdown();
631 // Should not crash
632 }
633 }
634
635 #[test]
636 fn test_many_strands_stress() {
637 unsafe {
638 static COUNTER: AtomicU32 = AtomicU32::new(0);
639
640 extern "C" fn increment(_stack: Stack) -> Stack {
641 COUNTER.fetch_add(1, Ordering::SeqCst);
642 std::ptr::null_mut()
643 }
644
645 // Reset counter for this test
646 COUNTER.store(0, Ordering::SeqCst);
647
648 // Spawn many strands to stress test synchronization
649 for _ in 0..1000 {
650 strand_spawn(increment, std::ptr::null_mut());
651 }
652
653 // Wait for all to complete
654 wait_all_strands();
655
656 // Verify all strands executed
657 assert_eq!(COUNTER.load(Ordering::SeqCst), 1000);
658 }
659 }
660
661 #[test]
662 fn test_strand_ids_are_unique() {
663 unsafe {
664 use std::collections::HashSet;
665
666 extern "C" fn noop(_stack: Stack) -> Stack {
667 std::ptr::null_mut()
668 }
669
670 // Spawn strands and collect their IDs
671 let mut ids = Vec::new();
672 for _ in 0..100 {
673 let id = strand_spawn(noop, std::ptr::null_mut());
674 ids.push(id);
675 }
676
677 // Wait for completion
678 wait_all_strands();
679
680 // Verify all IDs are unique
681 let unique_ids: HashSet<_> = ids.iter().collect();
682 assert_eq!(unique_ids.len(), 100, "All strand IDs should be unique");
683
684 // Verify all IDs are positive
685 assert!(
686 ids.iter().all(|&id| id > 0),
687 "All strand IDs should be positive"
688 );
689 }
690 }
691
692 #[test]
693 fn test_arena_reset_with_strands() {
694 unsafe {
695 use crate::arena;
696 use crate::seqstring::arena_string;
697
698 extern "C" fn create_temp_strings(stack: Stack) -> Stack {
699 // Create many temporary arena strings (simulating request parsing)
700 for i in 0..100 {
701 let temp = arena_string(&format!("temporary string {}", i));
702 // Use the string temporarily
703 assert!(!temp.as_str().is_empty());
704 // String is dropped, but memory stays in arena
705 }
706
707 // Arena should have allocated memory
708 let stats = arena::arena_stats();
709 assert!(stats.allocated_bytes > 0, "Arena should have allocations");
710
711 stack // Return empty stack
712 }
713
714 // Reset arena before test
715 arena::arena_reset();
716
717 // Spawn strand that creates many temp strings
718 strand_spawn(create_temp_strings, std::ptr::null_mut());
719
720 // Wait for strand to complete (which calls free_stack -> arena_reset)
721 wait_all_strands();
722
723 // After strand exits, arena should be reset
724 let stats_after = arena::arena_stats();
725 assert_eq!(
726 stats_after.allocated_bytes, 0,
727 "Arena should be reset after strand exits"
728 );
729 }
730 }
731
732 #[test]
733 fn test_arena_with_channel_send() {
734 unsafe {
735 use crate::channel::{close_channel, make_channel, receive, send};
736 use crate::stack::{pop, push};
737 use crate::value::Value;
738 use std::sync::Arc;
739 use std::sync::atomic::{AtomicI64, AtomicU32, Ordering};
740
741 static RECEIVED_COUNT: AtomicU32 = AtomicU32::new(0);
742 static CHANNEL_PTR: AtomicI64 = AtomicI64::new(0);
743
744 // Create channel
745 let stack = crate::stack::alloc_test_stack();
746 let stack = make_channel(stack);
747 let (stack, chan_val) = pop(stack);
748 let channel = match chan_val {
749 Value::Channel(ch) => ch,
750 _ => panic!("Expected Channel"),
751 };
752
753 // Store channel pointer for strands
754 let ch_ptr = Arc::as_ptr(&channel) as i64;
755 CHANNEL_PTR.store(ch_ptr, Ordering::Release);
756
757 // Keep Arc alive
758 std::mem::forget(channel.clone());
759 std::mem::forget(channel.clone());
760
761 // Sender strand: creates arena string, sends through channel
762 extern "C" fn sender(_stack: Stack) -> Stack {
763 use crate::seqstring::arena_string;
764 use crate::value::ChannelData;
765 use std::sync::Arc;
766
767 unsafe {
768 let ch_ptr = CHANNEL_PTR.load(Ordering::Acquire) as *const ChannelData;
769 let channel = Arc::from_raw(ch_ptr);
770 let channel_clone = Arc::clone(&channel);
771 std::mem::forget(channel); // Don't drop
772
773 // Create arena string
774 let msg = arena_string("Hello from sender!");
775
776 // Push string and channel for send
777 let stack = push(crate::stack::alloc_test_stack(), Value::String(msg));
778 let stack = push(stack, Value::Channel(channel_clone));
779
780 // Send (will clone to global)
781 send(stack)
782 }
783 }
784
785 // Receiver strand: receives string from channel
786 extern "C" fn receiver(_stack: Stack) -> Stack {
787 use crate::value::ChannelData;
788 use std::sync::Arc;
789 use std::sync::atomic::Ordering;
790
791 unsafe {
792 let ch_ptr = CHANNEL_PTR.load(Ordering::Acquire) as *const ChannelData;
793 let channel = Arc::from_raw(ch_ptr);
794 let channel_clone = Arc::clone(&channel);
795 std::mem::forget(channel); // Don't drop
796
797 // Push channel for receive
798 let stack = push(
799 crate::stack::alloc_test_stack(),
800 Value::Channel(channel_clone),
801 );
802
803 // Receive message
804 let stack = receive(stack);
805
806 // Pop and verify message
807 let (_stack, msg_val) = pop(stack);
808 match msg_val {
809 Value::String(s) => {
810 assert_eq!(s.as_str(), "Hello from sender!");
811 RECEIVED_COUNT.fetch_add(1, Ordering::SeqCst);
812 }
813 _ => panic!("Expected String"),
814 }
815
816 std::ptr::null_mut()
817 }
818 }
819
820 // Spawn sender and receiver
821 spawn_strand(sender);
822 spawn_strand(receiver);
823
824 // Wait for both strands
825 wait_all_strands();
826
827 // Verify message was received
828 assert_eq!(
829 RECEIVED_COUNT.load(Ordering::SeqCst),
830 1,
831 "Receiver should have received message"
832 );
833
834 // Clean up channel
835 let stack = push(stack, Value::Channel(channel));
836 close_channel(stack);
837 }
838 }
839
840 #[test]
841 fn test_no_memory_leak_over_many_iterations() {
842 // PR #11 feedback: Verify 10K+ strand iterations don't cause memory growth
843 unsafe {
844 use crate::arena;
845 use crate::seqstring::arena_string;
846
847 extern "C" fn allocate_strings_and_exit(stack: Stack) -> Stack {
848 // Simulate request processing: many temp allocations
849 for i in 0..50 {
850 let temp = arena_string(&format!("request header {}", i));
851 assert!(!temp.as_str().is_empty());
852 // Strings dropped here but arena memory stays allocated
853 }
854 stack
855 }
856
857 // Run many iterations to detect leaks
858 let iterations = 10_000;
859
860 for i in 0..iterations {
861 // Reset arena before each iteration to start fresh
862 arena::arena_reset();
863
864 // Spawn strand, let it allocate strings, then exit
865 strand_spawn(allocate_strings_and_exit, std::ptr::null_mut());
866
867 // Wait for completion (triggers arena reset)
868 wait_all_strands();
869
870 // Every 1000 iterations, verify arena is actually reset
871 if i % 1000 == 0 {
872 let stats = arena::arena_stats();
873 assert_eq!(
874 stats.allocated_bytes, 0,
875 "Arena not reset after iteration {} (leaked {} bytes)",
876 i, stats.allocated_bytes
877 );
878 }
879 }
880
881 // Final verification: arena should be empty
882 let final_stats = arena::arena_stats();
883 assert_eq!(
884 final_stats.allocated_bytes, 0,
885 "Arena leaked memory after {} iterations ({} bytes)",
886 iterations, final_stats.allocated_bytes
887 );
888
889 println!(
890 "✓ Memory leak test passed: {} iterations with no growth",
891 iterations
892 );
893 }
894 }
895
896 #[test]
897 fn test_parse_stack_size_valid() {
898 assert_eq!(parse_stack_size(Some("2097152".to_string())), 2097152);
899 assert_eq!(parse_stack_size(Some("1".to_string())), 1);
900 assert_eq!(parse_stack_size(Some("999999999".to_string())), 999999999);
901 }
902
903 #[test]
904 fn test_parse_stack_size_none() {
905 assert_eq!(parse_stack_size(None), DEFAULT_STACK_SIZE);
906 }
907
908 #[test]
909 fn test_parse_stack_size_zero() {
910 // Zero should fall back to default (with warning printed to stderr)
911 assert_eq!(parse_stack_size(Some("0".to_string())), DEFAULT_STACK_SIZE);
912 }
913
914 #[test]
915 fn test_parse_stack_size_invalid() {
916 // Non-numeric should fall back to default (with warning printed to stderr)
917 assert_eq!(
918 parse_stack_size(Some("invalid".to_string())),
919 DEFAULT_STACK_SIZE
920 );
921 assert_eq!(
922 parse_stack_size(Some("-100".to_string())),
923 DEFAULT_STACK_SIZE
924 );
925 assert_eq!(parse_stack_size(Some("".to_string())), DEFAULT_STACK_SIZE);
926 assert_eq!(
927 parse_stack_size(Some("1.5".to_string())),
928 DEFAULT_STACK_SIZE
929 );
930 }
931
932 #[test]
933 #[cfg(feature = "diagnostics")]
934 fn test_strand_registry_basic() {
935 let registry = StrandRegistry::new(10);
936
937 // Register some strands
938 assert_eq!(registry.register(1), Some(0)); // First slot
939 assert_eq!(registry.register(2), Some(1)); // Second slot
940 assert_eq!(registry.register(3), Some(2)); // Third slot
941
942 // Verify active strands
943 let active: Vec<_> = registry.active_strands().collect();
944 assert_eq!(active.len(), 3);
945
946 // Unregister one
947 assert!(registry.unregister(2));
948 let active: Vec<_> = registry.active_strands().collect();
949 assert_eq!(active.len(), 2);
950
951 // Unregister non-existent should return false
952 assert!(!registry.unregister(999));
953 }
954
955 #[test]
956 #[cfg(feature = "diagnostics")]
957 fn test_strand_registry_overflow() {
958 let registry = StrandRegistry::new(3); // Small capacity
959
960 // Fill it up
961 assert!(registry.register(1).is_some());
962 assert!(registry.register(2).is_some());
963 assert!(registry.register(3).is_some());
964
965 // Next should overflow
966 assert!(registry.register(4).is_none());
967 assert_eq!(registry.overflow_count.load(Ordering::Relaxed), 1);
968
969 // Another overflow
970 assert!(registry.register(5).is_none());
971 assert_eq!(registry.overflow_count.load(Ordering::Relaxed), 2);
972 }
973
974 #[test]
975 #[cfg(feature = "diagnostics")]
976 fn test_strand_registry_slot_reuse() {
977 let registry = StrandRegistry::new(3);
978
979 // Fill it up
980 registry.register(1);
981 registry.register(2);
982 registry.register(3);
983
984 // Unregister middle one
985 registry.unregister(2);
986
987 // New registration should reuse the slot
988 assert!(registry.register(4).is_some());
989 assert_eq!(registry.active_strands().count(), 3);
990 }
991
992 #[test]
993 #[cfg(feature = "diagnostics")]
994 fn test_strand_registry_concurrent_stress() {
995 use std::sync::Arc;
996 use std::thread;
997
998 let registry = Arc::new(StrandRegistry::new(50)); // Moderate capacity
999
1000 let handles: Vec<_> = (0..100)
1001 .map(|i| {
1002 let reg = Arc::clone(®istry);
1003 thread::spawn(move || {
1004 let id = (i + 1) as u64;
1005 // Register
1006 let _ = reg.register(id);
1007 // Brief work
1008 thread::yield_now();
1009 // Unregister
1010 reg.unregister(id);
1011 })
1012 })
1013 .collect();
1014
1015 for h in handles {
1016 h.join().unwrap();
1017 }
1018
1019 // All slots should be free after all threads complete
1020 assert_eq!(registry.active_strands().count(), 0);
1021 }
1022
1023 #[test]
1024 fn test_strand_lifecycle_counters() {
1025 unsafe {
1026 // Reset counters for isolation (not perfect but helps)
1027 let initial_spawned = TOTAL_SPAWNED.load(Ordering::Relaxed);
1028 let initial_completed = TOTAL_COMPLETED.load(Ordering::Relaxed);
1029
1030 static COUNTER: AtomicU32 = AtomicU32::new(0);
1031
1032 extern "C" fn simple_work(_stack: Stack) -> Stack {
1033 COUNTER.fetch_add(1, Ordering::SeqCst);
1034 std::ptr::null_mut()
1035 }
1036
1037 COUNTER.store(0, Ordering::SeqCst);
1038
1039 // Spawn some strands
1040 for _ in 0..10 {
1041 strand_spawn(simple_work, std::ptr::null_mut());
1042 }
1043
1044 wait_all_strands();
1045
1046 // Verify counters incremented
1047 let final_spawned = TOTAL_SPAWNED.load(Ordering::Relaxed);
1048 let final_completed = TOTAL_COMPLETED.load(Ordering::Relaxed);
1049
1050 assert!(
1051 final_spawned >= initial_spawned + 10,
1052 "TOTAL_SPAWNED should have increased by at least 10"
1053 );
1054 assert!(
1055 final_completed >= initial_completed + 10,
1056 "TOTAL_COMPLETED should have increased by at least 10"
1057 );
1058 assert_eq!(COUNTER.load(Ordering::SeqCst), 10);
1059 }
1060 }
1061}