Struct Gpt2Model

Source
pub struct Gpt2Model { /* private fields */ }
Expand description

§GPT2 Base model

Base architecture for GPT2 model. Usually complemented with a task-specific head, such as a language model head. It is made of the following blocks:

  • wte: token embeddings
  • wpe: position embeddings
  • h: Encoder (transformer) made of a vector of layers. Each layer is made of a multi-head attention layer, layer-normalization layers and a MLP made of linear layers.
  • output_past: flag indicating if the model should return a past state. This can be fed back to the model to improve the quality of text generated.
  • output_hidden_states: flag indicating if the model should return all hidden states (as opposed to only the last layer)
  • output_attentions: flag indicating if the model should return activation weights

Implementations§

Source§

impl Gpt2Model

Source

pub fn new<'p, P>(p: P, config: &Gpt2Config) -> Gpt2Model
where P: Borrow<Path<'p>>,

Build a new Gpt2Model

§Arguments
  • p - Variable store path for the root of the GPT2 model
  • config - Gpt2Config object defining the model architecture
§Example
use rust_bert::gpt2::{Gpt2Config, Gpt2Model};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = Gpt2Config::from_file(config_path);
let gpt2: Gpt2Model = Gpt2Model::new(&p.root() / "gpt2", &config);
Source

pub fn forward_t( &self, input_ids: Option<&Tensor>, layer_past: Option<&Vec<Tensor>>, attention_mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool, ) -> Result<Gpt2ModelOutput, RustBertError>

Forward pass through the model

§Arguments
  • input_ids - Optional input tensor of shape (batch size, sequence_length). If None, pre-computed embeddings must be provided (see input_embeds)
  • layer_past - Optional vector of length n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head). When provided, these are concatenated with the current input keys and values.
  • attention_mask - Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1
  • input_embeds - Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (see input_ids)
  • token_type_ids - Optional token type ids used to indicate the portion of the input the token belongs to. If not None, token type embeddings will be added to the token and position embeddings.
  • position_ids - Optional position ids of shape (batch size, sequence_length). If None, will be incremented starting from the length of the past input.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
  • Gpt2ModelOutput containing:
    • output - Tensor of shape (batch size, sequence_length, vocab_size) representing the activations of the last hidden state
    • cache - Option<Vec<Tensor>> of length n_layer containing the past keys and values of each layer of shape (2, batch size, number of heads, past_sequence_length, hidden size per head)
    • all_hidden_states - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
§Example
use rust_bert::gpt2::{Gpt2Config, Gpt2Model};
let (batch_size, sequence_length, past_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let mut past: Vec<Tensor> = Vec::with_capacity(config.n_layer as usize);
for _ in 0..config.n_layer as usize {
    past.push(Tensor::rand(
        &[
            2,
            batch_size,
            config.n_head,
            past_sequence_length,
            config.n_embd / config.n_head,
        ],
        (Double, device),
    ))
}
let attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let token_type_ids = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let position_ids = Tensor::arange(sequence_length, (Int64, device))
    .expand(&[batch_size, sequence_length], true);

let model_output = no_grad(|| {
    gpt2_model
        .forward_t(
            Some(&input_tensor),
            Some(&past),
            Some(&attention_mask),
            Some(&token_type_ids),
            Some(&position_ids),
            None,
            false,
        )
        .unwrap()
});

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> MaybeSendSync for T