pub struct TokenClassificationConfig {
pub model_type: ModelType,
pub model_resource: ModelResource,
pub config_resource: Box<dyn ResourceProvider + Send>,
pub vocab_resource: Box<dyn ResourceProvider + Send>,
pub merges_resource: Option<Box<dyn ResourceProvider + Send>>,
pub lower_case: bool,
pub strip_accents: Option<bool>,
pub add_prefix_space: Option<bool>,
pub device: Device,
pub kind: Option<Kind>,
pub label_aggregation_function: LabelAggregationOption,
pub batch_size: usize,
}
Expand description
§Configuration for TokenClassificationModel
Contains information regarding the model to load and device to place the model on.
Fields§
§model_type: ModelType
Model type
model_resource: ModelResource
Model weights resource (default: pretrained BERT model on CoNLL)
config_resource: Box<dyn ResourceProvider + Send>
Config resource (default: pretrained BERT model on CoNLL)
vocab_resource: Box<dyn ResourceProvider + Send>
Vocab resource (default: pretrained BERT model on CoNLL)
merges_resource: Option<Box<dyn ResourceProvider + Send>>
Merges resource (default: pretrained BERT model on CoNLL)
lower_case: bool
Automatically lower case all input upon tokenization (assumes a lower-cased model)
strip_accents: Option<bool>
Flag indicating if the tokenizer should strip accents (normalization). Only used for BERT / ALBERT models
add_prefix_space: Option<bool>
Flag indicating if the tokenizer should add a white space before each tokenized input (needed for some Roberta models)
device: Device
Device to place the model on (default: CUDA/GPU when available)
kind: Option<Kind>
Model weights precision. If not provided, will default to full precision on CPU, or the loaded weights precision otherwise
label_aggregation_function: LabelAggregationOption
Sub-tokens aggregation method (default: LabelAggregationOption::First
)
batch_size: usize
Batch size for predictions
Implementations§
Source§impl TokenClassificationConfig
impl TokenClassificationConfig
Sourcepub fn new<RC, RV>(
model_type: ModelType,
model_resource: ModelResource,
config_resource: RC,
vocab_resource: RV,
merges_resource: Option<RV>,
lower_case: bool,
strip_accents: impl Into<Option<bool>>,
add_prefix_space: impl Into<Option<bool>>,
label_aggregation_function: LabelAggregationOption,
) -> TokenClassificationConfig
pub fn new<RC, RV>( model_type: ModelType, model_resource: ModelResource, config_resource: RC, vocab_resource: RV, merges_resource: Option<RV>, lower_case: bool, strip_accents: impl Into<Option<bool>>, add_prefix_space: impl Into<Option<bool>>, label_aggregation_function: LabelAggregationOption, ) -> TokenClassificationConfig
Instantiate a new token classification configuration of the supplied type.
§Arguments
model_type
-ModelType
indicating the model type to load (must match with the actual data to be loaded!)- model - The
ResourceProvider
pointing to the model to load (e.g. model.ot) - config - The
ResourceProvider
pointing to the model configuration to load (e.g. config.json) - vocab - The
ResourceProvider
pointing to the tokenizers’ vocabulary to load (e.g. vocab.txt/vocab.json) - vocab - An optional
ResourceProvider
pointing to the tokenizers’ merge file to load (e.g. merges.txt), needed only for Roberta. - lower_case - A
bool
indicating whether the tokenizer should lower case all input (in case of a lower-cased model)
Trait Implementations§
Source§impl Default for TokenClassificationConfig
impl Default for TokenClassificationConfig
Source§fn default() -> TokenClassificationConfig
fn default() -> TokenClassificationConfig
Provides a default CoNLL-2003 NER model (English)
Source§impl From<POSConfig> for TokenClassificationConfig
impl From<POSConfig> for TokenClassificationConfig
Source§impl From<TokenClassificationConfig> for POSConfig
impl From<TokenClassificationConfig> for POSConfig
Source§fn from(token_classification_config: TokenClassificationConfig) -> Self
fn from(token_classification_config: TokenClassificationConfig) -> Self
Auto Trait Implementations§
impl Freeze for TokenClassificationConfig
impl !RefUnwindSafe for TokenClassificationConfig
impl Send for TokenClassificationConfig
impl Sync for TokenClassificationConfig
impl Unpin for TokenClassificationConfig
impl !UnwindSafe for TokenClassificationConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more