pub struct XLNetLMHeadModel { /* private fields */ }
Expand description
§XLNetLMHeadModel
XLNet model with a language model head for language generation tasks It is made of the following blocks:
base_model
:XLNetModel
lm_head
: Linear language modeling head, projecting the hidden state logits to the vocabulary space
Implementations§
Source§impl XLNetLMHeadModel
impl XLNetLMHeadModel
Sourcepub fn new<'p, P>(p: P, config: &XLNetConfig) -> XLNetLMHeadModel
pub fn new<'p, P>(p: P, config: &XLNetConfig) -> XLNetLMHeadModel
Build a new XLNetLMHeadModel
§Arguments
p
- Variable store path for the root of the XLNet modelconfig
-XLNetConfig
object defining the model architecture
§Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = XLNetConfig::from_file(config_path);
let xlnet_model = XLNetLMHeadModel::new(&p.root(), &config);
Sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<Option<LayerState>>>,
perm_mask: Option<&Tensor>,
target_mapping: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool,
) -> Result<LMModelOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, old_layer_states: Option<Vec<Option<LayerState>>>, perm_mask: Option<&Tensor>, target_mapping: Option<&Tensor>, token_type_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool, ) -> Result<LMModelOutput, RustBertError>
Forward pass through the model
§Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.perm_mask
- Optional tensor of shape (batch size, sequence_length, sequence_length). Mask to indicate the attention pattern for each input token (only used for pre-training over permutations, rather than simple token masking).target_mapping
- Optional tensor of shape (batch size, num_tokens, sequence_length) indicating the position of the masked words to predict.token_type_ids
- Optional tensor (batch size, sequence_length) indicating the sentence ID of the token (0: first sentence, 1: second sentence).input_embeds
- Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This orinput_ids
must be provided.old_layer_states
- Optional vector of lengthnum_layers
containing optionalLayerStates
containing the last calculated content for the attention layers. This avoids recomputing attention weights at past positions and speeds up decoding.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
LMModelOutput
containing:lm_logits
-Tensor
of shape (batch size, sequence_length, vocab_size) representing the logits for each vocab item and positioncache
-XLNetCache
made ofOption<Vec<Option<LayerState>>>
of length n_layers and shape (past_sequence_length, batch size, hidden_size) containing the previous contentencoder_hidden_states
- Noneall_hidden_states
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length n_layers with shape (batch size, sequence_length, hidden_size)
§Example
use rust_bert::xlnet::{XLNetConfig, XLNetLMHeadModel};
let (batch_size, sequence_length) = (64, 128);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_mapping = Tensor::zeros(&[64, 1, 128], (Kind::Float, device));
let _ = target_mapping.narrow(2, 3, 1).fill_(1.0);
let model_output = no_grad(|| {
xlnet_model.forward_t(
Some(&input_tensor),
Some(&attention_mask),
None,
Some(&target_mapping),
None,
None,
None,
false,
)
});
Auto Trait Implementations§
impl Freeze for XLNetLMHeadModel
impl RefUnwindSafe for XLNetLMHeadModel
impl Send for XLNetLMHeadModel
impl !Sync for XLNetLMHeadModel
impl Unpin for XLNetLMHeadModel
impl UnwindSafe for XLNetLMHeadModel
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more