pub struct RobertaForMultipleChoice { /* private fields */ }
Expand description
§RoBERTa for multiple choices
Multiple choices model using a RoBERTa base model and a linear classifier.
Input should be in the form <s> Context </s> Possible choice </s>
. The choice is made along the batch axis,
assuming all elements of the batch are alternatives to be chosen from for a given context.
It is made of the following blocks:
roberta
: Base RoBERTa modelclassifier
: Linear layer for multiple choices
Implementations§
Source§impl RobertaForMultipleChoice
impl RobertaForMultipleChoice
Sourcepub fn new<'p, P>(p: P, config: &BertConfig) -> RobertaForMultipleChoice
pub fn new<'p, P>(p: P, config: &BertConfig) -> RobertaForMultipleChoice
Build a new RobertaForMultipleChoice
§Arguments
p
- Variable store path for the root of the RobertaForMaskedLM modelconfig
-RobertaConfig
object defining the model architecture and vocab size
§Example
use rust_bert::roberta::{RobertaConfig, RobertaForMultipleChoice};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = RobertaConfig::from_file(config_path);
let roberta = RobertaForMultipleChoice::new(&p.root() / "roberta", &config);
Sourcepub fn forward_t(
&self,
input_ids: &Tensor,
mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
train: bool,
) -> RobertaSequenceClassificationOutput
pub fn forward_t( &self, input_ids: &Tensor, mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, train: bool, ) -> RobertaSequenceClassificationOutput
Forward pass through the model
§Arguments
input_ids
- Input tensor of shape (batch size, sequence_length).mask
- Optional mask of shape (batch size, sequence_length). Masked position have value 0, non-masked value 1. If None set to 1token_type_ids
-Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. ) and 1 for the second sentence. If None set to 0.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
RobertaSequenceClassificationOutput
containing:logits
-Tensor
of shape (1, batch size) containing the logits for each of the alternatives givenall_hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)
§Example
use rust_bert::roberta::RobertaForMultipleChoice;
let (num_choices, sequence_length) = (3, 128);
let input_tensor = Tensor::rand(&[num_choices, sequence_length], (Int64, device));
let mask = Tensor::zeros(&[num_choices, sequence_length], (Int64, device));
let token_type_ids = Tensor::zeros(&[num_choices, sequence_length], (Int64, device));
let position_ids = Tensor::arange(sequence_length, (Int64, device))
.expand(&[num_choices, sequence_length], true);
let model_output = no_grad(|| {
roberta_model.forward_t(
&input_tensor,
Some(&mask),
Some(&token_type_ids),
Some(&position_ids),
false,
)
});
Auto Trait Implementations§
impl Freeze for RobertaForMultipleChoice
impl RefUnwindSafe for RobertaForMultipleChoice
impl Send for RobertaForMultipleChoice
impl !Sync for RobertaForMultipleChoice
impl Unpin for RobertaForMultipleChoice
impl UnwindSafe for RobertaForMultipleChoice
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more