pub struct MarianForConditionalGeneration { /* private fields */ }
Expand description
§Marian Model for conditional generation
Marian model with a vocabulary decoding head It is made of the following blocks:
base_model
:BartModel
Base BART modellinear
: Linear layer with bias tied to the weights of the token id embeddings
Implementations§
Source§impl MarianForConditionalGeneration
impl MarianForConditionalGeneration
Sourcepub fn new<'p, P>(p: P, config: &MarianConfig) -> MarianForConditionalGeneration
pub fn new<'p, P>(p: P, config: &MarianConfig) -> MarianForConditionalGeneration
Build a new MarianForConditionalGeneration
§Arguments
p
- Variable store path for the root of the BART modelconfig
-MarianConfig
object defining the model architecturegeneration_mode
- flag indicating if the model should run in generation mode (a decoder start token must then be provided)
§Example
use rust_bert::marian::{MarianConfig, MarianForConditionalGeneration};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = MarianConfig::from_file(config_path);
let model = MarianForConditionalGeneration::new(&p.root(), &config);
Sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>,
train: bool,
) -> BartModelOutput
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, encoder_outputs: Option<&Tensor>, decoder_input_ids: Option<&Tensor>, decoder_attention_mask: Option<&Tensor>, old_layer_states: Option<Vec<(Option<LayerState>, Option<LayerState>)>>, train: bool, ) -> BartModelOutput
Forward pass through the model
§Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). Must be provided when not running in generation modeattention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialized with a BOS token)decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
BartModelOutput
containing:decoder_output
-Tensor
of shape (batch size, target_sequence_length, vocab_size) representing the logits for each vocabulary item and positioncache
-(Option<Tensor>, Option<Vec<&LayerState, &LayerState>>)
of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
§Example
use rust_bert::bart::BartConfig;
use rust_bert::marian::MarianForConditionalGeneration;
let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
let encoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let decoder_attention_mask =
Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let model_output = no_grad(|| {
marian_model.forward_t(
Some(&input_tensor),
Some(&encoder_attention_mask),
None,
Some(&target_tensor),
Some(&decoder_attention_mask),
None,
false,
)
});
pub fn encode( &self, input_ids: &Tensor, attention_mask: Option<&Tensor>, ) -> Tensor
Auto Trait Implementations§
impl Freeze for MarianForConditionalGeneration
impl RefUnwindSafe for MarianForConditionalGeneration
impl Send for MarianForConditionalGeneration
impl !Sync for MarianForConditionalGeneration
impl Unpin for MarianForConditionalGeneration
impl UnwindSafe for MarianForConditionalGeneration
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more