pub struct LongformerForMultipleChoice { /* private fields */ }
Expand description
§Longformer for multiple choices
Multiple choices model using a Longformer base model and a linear classifier.
Input should be in the form <cls> Context <sep><sep> Possible choice <sep>
. The choice is made along the batch axis,
assuming all elements of the batch are alternatives to be chosen from for a given context.
It is made of the following blocks:
longformer
: Base LongformerModel modelclassifier
: Linear layer for multiple choices
Implementations§
Source§impl LongformerForMultipleChoice
impl LongformerForMultipleChoice
Sourcepub fn new<'p, P>(
p: P,
config: &LongformerConfig,
) -> LongformerForMultipleChoice
pub fn new<'p, P>( p: P, config: &LongformerConfig, ) -> LongformerForMultipleChoice
Build a new LongformerForMultipleChoice
§Arguments
p
- Variable store path for the root of the Longformer modelconfig
-LongformerConfig
object defining the model architecture
§Example
use rust_bert::longformer::{LongformerConfig, LongformerForMultipleChoice};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = LongformerConfig::from_file(config_path);
let longformer_model = LongformerForMultipleChoice::new(&p.root(), &config);
Sourcepub fn forward_t(
&self,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
global_attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool,
) -> Result<LongformerSequenceClassificationOutput, RustBertError>
pub fn forward_t( &self, input_ids: Option<&Tensor>, attention_mask: Option<&Tensor>, global_attention_mask: Option<&Tensor>, token_type_ids: Option<&Tensor>, position_ids: Option<&Tensor>, input_embeds: Option<&Tensor>, train: bool, ) -> Result<LongformerSequenceClassificationOutput, RustBertError>
Forward pass through the model
§Arguments
input_ids
- Optional input tensor of shape (batch size, sequence_length). This orinput_embeds
must be provided.attention_mask
- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 0 will be masked.global_attention_mask
- Optional attention mask of shape (batch size, sequence_length). Positions with a mask with value 1 will attend all other positions in the sequence.token_type_ids
- Optional segment id of shape (batch size, sequence_length). Convention is value of 0 for the first sentence (incl. SEP) and 1 for the second sentence. If None set to 0.position_ids
- Optional position ids of shape (batch size, sequence_length). If None, will be incremented from 0.input_embeds
- Optional pre-computed input embeddings of shape (batch size, sequence_length, hidden_size). If None, input ids must be provided (seeinput_ids
)train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
LongformerSequenceClassificationOutput
containing:logits
-Tensor
of shape (1, batch size) containing the logits for each of the alternatives givenall_hidden_states
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, sequence_length, hidden_size)all_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, num_heads, sequence_length, * attention_window_size*, x + attention_window_size + 1) where x is the number of tokens with global attentionall_global_attentions
-Option<Vec<Tensor>>
of length num_hidden_layers with shape (batch size, num_heads, sequence_length, attention_window_size, x) where x is the number of tokens with global attention
§Example
use rust_bert::longformer::{LongformerConfig, LongformerForMultipleChoice};
let longformer_model = LongformerForMultipleChoice::new(&vs.root(), &config);
let (batch_size, sequence_length, target_sequence_length) = (64, 128, 32);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let global_attention_mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let model_output = no_grad(|| {
longformer_model
.forward_t(
Some(&input_tensor),
Some(&attention_mask),
Some(&global_attention_mask),
None,
None,
None,
false,
)
.unwrap()
});
Auto Trait Implementations§
impl Freeze for LongformerForMultipleChoice
impl RefUnwindSafe for LongformerForMultipleChoice
impl Send for LongformerForMultipleChoice
impl !Sync for LongformerForMultipleChoice
impl Unpin for LongformerForMultipleChoice
impl UnwindSafe for LongformerForMultipleChoice
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more