pub struct BartForSequenceClassification { /* private fields */ }
Expand description
§BART Model for sequence classification
BART model with a classification head It is made of the following blocks:
base_model
:BartModel
Base BART modelclassification_head
:BartClassificationHead
made of 2 linear layers mapping hidden states to a target classeos_token_id
: token id for the EOS token carrying the pooled representation for classification
Implementations§
Source§impl BartForSequenceClassification
impl BartForSequenceClassification
Sourcepub fn new<'p, P>(
p: P,
config: &BartConfig,
) -> Result<BartForSequenceClassification, RustBertError>
pub fn new<'p, P>( p: P, config: &BartConfig, ) -> Result<BartForSequenceClassification, RustBertError>
Build a new BartForSequenceClassification
§Arguments
p
- Variable store path for the root of the BART modelconfig
-BartConfig
object defining the model architecture
§Example
use rust_bert::bart::{BartConfig, BartForSequenceClassification};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};
let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = BartConfig::from_file(config_path);
let bart: BartForSequenceClassification =
BartForSequenceClassification::new(&p.root() / "bart", &config).unwrap();
Sourcepub fn forward_t(
&self,
input_ids: &Tensor,
attention_mask: Option<&Tensor>,
encoder_output: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
decoder_attention_mask: Option<&Tensor>,
train: bool,
) -> BartModelOutput
pub fn forward_t( &self, input_ids: &Tensor, attention_mask: Option<&Tensor>, encoder_output: Option<&Tensor>, decoder_input_ids: Option<&Tensor>, decoder_attention_mask: Option<&Tensor>, train: bool, ) -> BartModelOutput
Forward pass through the model
§Arguments
input_ids
- Optional input tensor of shape (batch size, source_sequence_length). Must be provided when not running in generation modeattention_mask
- Optional attention mask of shape (batch size, source_sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.encoder_outputs
- Optional tuple made of a tensor of shape (batch size, source_sequence_length, encoder_hidden_dim) and optional vectors of tensors of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size). These correspond to the encoder last hidden state and optional hidden states/attention weights for encoder layers. When provided, the encoder hidden state will not be recalculated. Useful for generation tasks.decoder_input_ids
- Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialized with a BOS token)decoder_attention_mask
- Optional attention mask of shape (batch size, target_sequence_length) for the decoder positions. Positions with a mask with value 0 will be masked.train
- boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
§Returns
BartModelOutput
containing:decoder_output
-Tensor
of shape (batch size, num_classes) representing the activations for each class and batch itemencoder_hidden_states
-Option<Tensor>
of shape (batch size, source_sequence_length, hidden_size) representing the activations of the last encoder hidden state if it was not provided, otherwise None.cache
-(Option<Tensor>, Option<Vec<&LayerState, &LayerState>>)
of length n_layer containing the encoder padding mask and past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.all_encoder_hidden_states
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_encoder_attentions
-Option<Vec<Tensor>>
of length num_encoder_layers with shape (batch size, source_sequence_length, hidden_size)all_decoder_hidden_states
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)all_decoder_attentions
-Option<Vec<Tensor>>
of length num_decoder_layers with shape (batch size, target_sequence_length, hidden_size)
§Example
use rust_bert::bart::{BartConfig, BartForSequenceClassification};
let (batch_size, source_sequence_length, target_sequence_length) = (64, 128, 56);
let input_tensor = Tensor::rand(&[batch_size, source_sequence_length], (Int64, device));
let target_tensor = Tensor::rand(&[batch_size, target_sequence_length], (Int64, device));
let encoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let decoder_attention_mask = Tensor::ones(&[batch_size, source_sequence_length], (Int64, device));
let model_output = no_grad(|| {
bart_model
.forward_t(&input_tensor,
Some(&encoder_attention_mask),
None,
Some(&target_tensor),
Some(&decoder_attention_mask),
false)
});
Auto Trait Implementations§
impl Freeze for BartForSequenceClassification
impl RefUnwindSafe for BartForSequenceClassification
impl Send for BartForSequenceClassification
impl !Sync for BartForSequenceClassification
impl Unpin for BartForSequenceClassification
impl UnwindSafe for BartForSequenceClassification
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more