1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
use crate::nodes::Node;

/// Segment tree with range queries and point updates.
/// It uses `O(n)` space, assuming that each node uses `O(1)` space.
/// Note if you don't need to use `lower_bound`, just use the [SegmentTree](crate::segment_tree::SegmentTree) it uses half the memory and it's more performant.
pub struct RecursiveSegmentTree<T: Node + Clone> {
    nodes: Vec<T>,
    n: usize,
}

impl<T> RecursiveSegmentTree<T>
where
    T: Node + Clone,
{
    /// Builds segment tree from slice, each element of the slice will correspond to a leaf of the segment tree.
    /// It has time complexity of `O(n*log(n))`, assuming that [combine](Node::combine) has constant time complexity.
    pub fn build(values: &[T]) -> Self {
        let n = values.len();
        let mut nodes = Vec::with_capacity(4 * n);
        for _ in 0..4 {
            for v in values {
                nodes.push(v.clone());
            }
        }
        let mut out = Self { nodes, n };
        out.build_helper(0, 0, n - 1, values);
        out
    }

    fn build_helper(&mut self, curr_node: usize, i: usize, j: usize, values: &[T]) {
        if i == j {
            self.nodes[curr_node] = values[i].clone();
            return;
        }
        let mid = (i + j) / 2;
        let left_node = 2 * curr_node + 1;
        let right_node = 2 * curr_node + 2;
        self.build_helper(left_node, i, mid, values);
        self.build_helper(right_node, mid + 1, j, values);
        self.nodes[curr_node] = T::combine(&self.nodes[left_node], &self.nodes[right_node]);
    }

    /// Sets the p-th element of the segment tree to value T and update the segment tree correspondingly.
    /// It will panic if p is not in `[0,n)`
    /// It has time complexity of `O(log(n))`, assuming that [combine](Node::combine) has constant time complexity.
    pub fn update(&mut self, p: usize, value: <T as Node>::Value) {
        self.update_helper(p, &value, 0, 0, self.n - 1);
    }

    fn update_helper(
        &mut self,
        p: usize,
        value: &<T as Node>::Value,
        curr_node: usize,
        i: usize,
        j: usize,
    ) {
        if j < p || p < i {
            return;
        }
        if i == j {
            self.nodes[curr_node] = Node::initialize(value);
            return;
        }
        let mid = (i + j) / 2;
        let left_node = 2 * curr_node + 1;
        let right_node = 2 * curr_node + 2;
        self.update_helper(p, value, left_node, i, mid);
        self.update_helper(p, value, right_node, mid + 1, j);
        self.nodes[curr_node] = Node::combine(&self.nodes[left_node], &self.nodes[right_node]);
    }

    /// Returns the result from the range `[left,right]`.
    /// It returns None if and only if range is empty.
    /// It will **panic** if `left` or `right` are not in [0,n).
    /// It has time complexity of `O(log(n))`, assuming that [combine](Node::combine) has constant time complexity.
    pub fn query(&self, left: usize, right: usize) -> Option<T> {
        self.query_helper(left, right, 0, 0, self.n - 1)
    }

    fn query_helper(
        &self,
        left: usize,
        right: usize,
        curr_node: usize,
        i: usize,
        j: usize,
    ) -> Option<T> {
        if j < left || right < i {
            return None;
        }
        let mid = (i + j) / 2;
        let left_node = 2 * curr_node + 1;
        let right_node = 2 * curr_node + 2;
        if left <= i && j <= right {
            return Some(self.nodes[curr_node].clone());
        }
        match (
            self.query_helper(left, right, left_node, i, mid),
            self.query_helper(left, right, right_node, mid + 1, j),
        ) {
            (Some(ans_left), Some(ans_right)) => Some(T::combine(&ans_left, &ans_right)),
            (Some(ans_left), None) => Some(ans_left),
            (None, Some(ans_right)) => Some(ans_right),
            (None, None) => None,
        }
    }

    /// A method that finds the smallest prefix[^note] `u` such that `predicate(u.value(), value)` is `true`. The following must be true:
    /// - `predicate` is monotonic over prefixes[^note2].
    /// - `g` will satisfy the following, given segments `[i,j]` and `[i,k]` with `j<k` we have that `predicate([i,k].value(),value)` implies `predicate([j+1,k].value(),g([i,j].value(),value))`.
    ///
    /// These are two examples, the first is finding the smallest prefix which sums at least some value.
    /// ```
    /// # use seg_tree::{segment_tree::RecursiveSegmentTree,utils::Sum,nodes::Node};
    /// let predicate = |left_value:&usize, value:&usize|{*left_value>=*value}; // Is the sum greater or equal to value?
    /// let g = |left_node:&usize,value:usize|{value-*left_node}; // Subtract the sum of the prefix.
    /// # let nodes: Vec<Sum<usize>> = (0..10).map(|x| Sum::initialize(&x)).collect();
    /// let seg_tree = RecursiveSegmentTree::build(&nodes); // [0,1,2,3,4,5,6,7,8,9] with Sum<usize> nodes
    /// let index = seg_tree.lower_bound(predicate, g, 3); // Will return 2 as sum([0,1,2])>=3
    /// # let sums = vec![0,1,3,6,10,15,21,28,36,45];
    /// # for i in 0..10{
    /// #    assert_eq!(seg_tree.lower_bound(predicate, g, sums[i]), i);
    /// # }
    /// ```
    /// The second is finding the position of the smallest value greater or equal to some value.
    /// ```
    /// # use seg_tree::{segment_tree::RecursiveSegmentTree,utils::Max,nodes::Node};
    /// let predicate = |left_value:&usize, value:&usize|{*left_value>=*value}; // Is the maximum greater or equal to value?
    /// let g = |_left_node:&usize,value:usize|{value}; // Do nothing
    /// # let nodes: Vec<Max<usize>> = (0..10).map(|x| Max::initialize(&x)).collect();
    /// let seg_tree = RecursiveSegmentTree::build(&nodes); // [0,1,2,3,4,5,6,7,8,9] with Max<usize> nodes
    /// let index = seg_tree.lower_bound(predicate, g, 3); // Will return 3 as 3>=3
    /// # for i in 0..10{
    /// #    assert_eq!(seg_tree.lower_bound(predicate, g, i), i);
    /// # }
    /// ```
    ///
    /// [^note]: A prefix is a segment of the form `[0,i]`.
    ///
    /// [^note2]: Given two prefixes `u` and `v` if `u` is contained in `v` then `predicate(u.value(), value)` implies `predicate(v.value(), value)`.
    pub fn lower_bound<F>(
        &self,
        predicate: F,
        g: fn(&<T as Node>::Value, <T as Node>::Value) -> <T as Node>::Value,
        value: <T as Node>::Value,
    ) -> usize
    where
        F: Fn(&<T as Node>::Value, &<T as Node>::Value) -> bool,
    {
        self.lower_bound_helper(0, 0, self.n - 1, predicate, g, value)
    }
    fn lower_bound_helper<F>(
        &self,
        curr_node: usize,
        i: usize,
        j: usize,
        predicate: F,
        g: fn(&<T as Node>::Value, <T as Node>::Value) -> <T as Node>::Value,
        value: <T as Node>::Value,
    ) -> usize
    where
        F: Fn(&<T as Node>::Value, &<T as Node>::Value) -> bool,
    {
        if i == j {
            return i;
        }
        let mid = (i + j) / 2;
        let left_node = 2 * curr_node + 1;
        let right_node = 2 * curr_node + 2;
        let left_value = self.nodes[left_node].value();
        if predicate(left_value, &value) {
            self.lower_bound_helper(left_node, i, mid, predicate, g, value)
        } else {
            let value = g(left_value, value);
            self.lower_bound_helper(right_node, mid + 1, j, predicate, g, value)
        }
    }
}
#[cfg(test)]
mod tests {
    use crate::{nodes::Node, utils::Min};

    use super::RecursiveSegmentTree;

    #[test]
    fn non_empty_query_returns_some() {
        let nodes: Vec<Min<usize>> = (0..=10).map(|x| Min::initialize(&x)).collect();
        let segment_tree = RecursiveSegmentTree::build(&nodes);
        assert!(segment_tree.query(0, 10).is_some());
    }
    #[test]
    fn empty_query_returns_none() {
        let nodes: Vec<Min<usize>> = (0..=10).map(|x| Min::initialize(&x)).collect();
        let segment_tree = RecursiveSegmentTree::build(&nodes);
        assert!(segment_tree.query(10, 0).is_none());
    }
    #[test]
    fn update_works() {
        let nodes: Vec<Min<usize>> = (0..=10).map(|x| Min::initialize(&x)).collect();
        let mut segment_tree = RecursiveSegmentTree::build(&nodes);
        let value = 20;
        segment_tree.update(0, value);
        assert_eq!(segment_tree.query(0, 0).unwrap().value(), &value);
    }
    #[test]
    fn query_works() {
        let nodes: Vec<Min<usize>> = (0..=10).map(|x| Min::initialize(&x)).collect();
        let segment_tree = RecursiveSegmentTree::build(&nodes);
        assert_eq!(segment_tree.query(1, 10).unwrap().value(), &1);
    }
}