Struct Machine

Source
pub struct Machine<Op, Val, F, E>
where Val: Debug + PartialEq, F: FnMut(&mut Stack<Val>, &Op, &mut ConditionStack) -> Result<(), E>,
{ /* private fields */ }
Expand description

A convenient wrapper around Stack providing multiple operation methods, i.e. xecuting scripts by evaluating operators and pushing values into the stack.

This is the preferred way to interact with Stacks, as they do not support operators, Items, and other abstractions.

Implementations§

Source§

impl<Op, Val, F, E> Machine<Op, Val, F, E>
where Op: Debug + Eq, Val: Debug + PartialEq + Clone, F: FnMut(&mut Stack<Val>, &Op, &mut ConditionStack) -> Result<(), E>,

Source

pub fn new(op_sys: F) -> Self

A simple factory that helps constructing a Machine around a existing operator system, be it user defined or any of the ones in the op_systems module.

This method initializes the internal stack to be empty.

§Examples
use scriptful::prelude::*;
use scriptful::op_systems::simple_math::simple_math_op_sys;

// Instantiate the machine with a reference to your operator system, or any of the ones in
// the `op_systems` module.
let machine = Machine::new(&simple_math_op_sys);

// Make sure the stack is initialized to be empty.
assert_eq!(machine.stack_length(), 0);
Source

pub fn operate(&mut self, item: &Item<Op, Val>) -> Result<Option<&Val>, E>

The simplest way to make a Machine evaluate a single Item, be it a Value or Operator.

Note that the preferred way to evaluate multiple Items at once is through the run_script method, which instead of single Items takes a Script, i.e. an array of Items.

§Panics

Operating on a Machine that has an empty Stack can cause a panic if the Item is an operator that tries to pop from it.

§Examples
use scriptful::prelude::*;
use scriptful::core::value::Value::*;
use scriptful::op_systems::simple_math::*;

// Instantiate the machine with a reference to your operator system, or any of the ones in
// the `op_systems` module.
let mut machine = Machine::new(&simple_math_op_sys);

// Operating a `Value::Integer(1)` should simply push it into the stack.
let result = machine.operate(&Item::Value(Integer(1)));
// Make sure the value gets pushed.
assert_eq!(result, Some(&Integer(1)));
// The length of the stack should be 1.
assert_eq!(machine.stack_length(), 1);

// Operating a `Value::Integer(2)` should simply push it into the stack.
let result = machine.operate(&Item::Value(Integer(2)));
// Make sure the value gets pushed.
assert_eq!(result, Some(&Integer(2)));
// The length of the stack should be 2.
assert_eq!(machine.stack_length(), 2);

// Operating an `MathOperator::Add` should pop the two topmost values in the stack, add them
// together, and push the result back into the stack.
let result = machine.operate(&Item::Operator(MathOperator::Add));
// Make sure the result is 3.
assert_eq!(result, Some(&Integer(3)));
// The final length of the stack should be 1 again.
assert_eq!(machine.stack_length(), 1);
Source

pub fn run_script( &mut self, script: ScriptRef<'_, Op, Val>, ) -> Result<Option<&Val>, E>

Evaluates a Script in the context of a Machine.

§Panics

Operating on a Machine that has an empty Stack can cause a panic if any of the Items in the Script is an operator that tries to pop from it.

§Examples
use scriptful::prelude::*;
use scriptful::core::value::Value::*;
use scriptful::op_systems::simple_math::*;

// Instantiate the machine with a reference to your operator system, or any of the ones in
// the `op_systems` module.
let mut machine = Machine::new(&simple_math_op_sys);

// Run a script that simply adds 1 and 2.
let result = machine.run_script(&Vec::from([
   Item::Value(Integer(1)),
   Item::Value(Integer(2)),
   Item::Operator(MathOperator::Add),
]));

// The result should unsurprisingly be 3.
assert_eq!(result, Some(&Integer(3)));
// The final length of the stack should be 1.
assert_eq!(machine.stack_length(), 1);
Source

pub fn stack_length(&self) -> usize

Returns the number of Values currently in the Stack.

§Examples
use scriptful::prelude::*;
use scriptful::core::value::Value::*;
use scriptful::op_systems::simple_math::*;

// Instantiate the machine with a reference to your operator system, or any of the ones in
// the `op_systems` module.
let mut machine = Machine::new(&simple_math_op_sys);

// Run a script that simply pushes 4 values into the stack.
machine.run_script(&Vec::from([
    Item::Value(Boolean(true)),
    Item::Value(Float(3.141592)),
    Item::Value(Integer(1337)),
    Item::Value(String("foo".into()))
]));

// The final length of the stack should be 4.
assert_eq!(machine.stack_length(), 4);

Trait Implementations§

Source§

impl<Op, Val, F, E> Debug for Machine<Op, Val, F, E>
where Op: Debug + Eq, Val: Debug + PartialEq + Clone, F: FnMut(&mut Stack<Val>, &Op, &mut ConditionStack) -> Result<(), E>,

Debugging of Machine only shows the internal Stack, but not the operator system.

The explanation for this is straightforward: how do you print a dynamic reference to a function?

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more

Auto Trait Implementations§

§

impl<Op, Val, F, E> Freeze for Machine<Op, Val, F, E>
where F: Freeze,

§

impl<Op, Val, F, E> RefUnwindSafe for Machine<Op, Val, F, E>

§

impl<Op, Val, F, E> Send for Machine<Op, Val, F, E>
where F: Send, Val: Send,

§

impl<Op, Val, F, E> Sync for Machine<Op, Val, F, E>
where F: Sync, Val: Sync,

§

impl<Op, Val, F, E> Unpin for Machine<Op, Val, F, E>
where F: Unpin, Val: Unpin,

§

impl<Op, Val, F, E> UnwindSafe for Machine<Op, Val, F, E>
where F: UnwindSafe, Val: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.