pub struct AdvancedStreamingProcessor<T: Tokenizer> { /* private fields */ }Expand description
Advanced streaming processor with parallel processing and monitoring
Implementations§
Source§impl<T: Tokenizer + Send + Sync> AdvancedStreamingProcessor<T>
impl<T: Tokenizer + Send + Sync> AdvancedStreamingProcessor<T>
Sourcepub fn new(tokenizer: T) -> Self
pub fn new(tokenizer: T) -> Self
Create new advanced streaming processor
Examples found in repository?
examples/complete_integration.rs (line 86)
57 fn new() -> Result<Self> {
58 println!("🔧 Initializing Complete Advanced System...");
59
60 // Configure Advanced mode with optimized settings
61 let config = AdvancedTextConfig {
62 enable_gpu_acceleration: true,
63 enable_simd_optimizations: true,
64 enable_neural_ensemble: true,
65 enable_real_time_adaptation: true,
66 enable_advanced_analytics: true,
67 enable_multimodal: true,
68 max_memory_usage_mb: 8192,
69 optimization_level: 3,
70 target_throughput: 5000.0,
71 enable_predictive_processing: true,
72 };
73
74 // Performance monitoring with strict thresholds
75 let perf_thresholds = PerformanceThresholds {
76 max_processing_time_ms: 500, // 500ms max
77 min_throughput: 1000.0, // 1000 docs/sec min
78 max_memory_usage_mb: 6144, // 6GB max
79 max_cpu_utilization: 85.0, // 85% max
80 min_cache_hit_rate: 0.85, // 85% min
81 };
82
83 let coordinator = AdvancedTextCoordinator::new(config)?;
84 let performance_monitor = AdvancedPerformanceMonitor::with_thresholds(perf_thresholds);
85 let simd_processor = AdvancedSIMDTextProcessor;
86 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default());
87
88 println!("✅ Advanced System initialized successfully!\n");
89
90 Ok(Self {
91 coordinator,
92 performance_monitor,
93 simd_processor,
94 streaming_processor,
95 })
96 }
97
98 /// Run the complete demonstration
99 fn run_complete_demo(&self) -> Result<()> {
100 // Demo 1: Integrated Text Processing Pipeline
101 self.demo_integrated_pipeline()?;
102
103 // Demo 2: Performance-Monitored SIMD Operations
104 self.demo_performance_monitored_simd()?;
105
106 // Demo 3: Adaptive Streaming Processing
107 self.demo_adaptive_streaming()?;
108
109 // Demo 4: Real-time Optimization and Adaptation
110 self.demo_realtime_optimization()?;
111
112 // Demo 5: Comprehensive System Analytics
113 self.demo_system_analytics()?;
114
115 Ok(())
116 }
117
118 /// Demonstrate integrated text processing pipeline
119 fn demo_integrated_pipeline(&self) -> Result<()> {
120 println!("📊 Demo 1: Integrated Text Processing Pipeline");
121 println!("==============================================");
122
123 let sample_documents = vec![
124 "Artificial intelligence is revolutionizing the field of natural language processing.".to_string(),
125 "Machine learning algorithms can now understand context and semantic meaning in text.".to_string(),
126 "Deep neural networks have enabled breakthrough performance in text classification tasks.".to_string(),
127 "SIMD optimizations allow for optimized string processing in modern computing systems.".to_string(),
128 "Real-time adaptation ensures optimal performance across diverse text processing workloads.".to_string(),
129 ];
130
131 println!(
132 "Processing {} documents through integrated pipeline...",
133 sample_documents.len()
134 );
135
136 // Start performance monitoring
137 let operation_monitor = self
138 .performance_monitor
139 .start_operation("integrated_pipeline")?;
140
141 let start_time = Instant::now();
142
143 // Process through Advanced coordinator
144 let result = self.coordinator.advanced_processtext(&sample_documents)?;
145
146 let processing_time = start_time.elapsed();
147
148 // Complete monitoring
149 operation_monitor.complete(sample_documents.len())?;
150
151 println!("\n📈 Pipeline Results:");
152 println!(" • Processing Time: {processing_time:?}");
153 println!(
154 " • Throughput: {:.2} docs/sec",
155 result.performance_metrics.throughput
156 );
157 println!(
158 " • Memory Efficiency: {:.1}%",
159 result.performance_metrics.memory_efficiency * 100.0
160 );
161 println!(
162 " • Accuracy Estimate: {:.1}%",
163 result.performance_metrics.accuracy_estimate * 100.0
164 );
165
166 println!("\n🔧 Applied Optimizations:");
167 for optimization in &result.optimizations_applied {
168 println!(" • {optimization}");
169 }
170
171 println!("\n🎯 Confidence Scores:");
172 for (metric, score) in &result.confidence_scores {
173 println!(" • {}: {:.1}%", metric, score * 100.0);
174 }
175
176 println!();
177 Ok(())
178 }
179
180 /// Demonstrate performance-monitored SIMD operations
181 fn demo_performance_monitored_simd(&self) -> Result<()> {
182 println!("⚡ Demo 2: Performance-Monitored SIMD Operations");
183 println!("===============================================");
184
185 let testtexts = [
186 "The quick brown fox jumps over the lazy dog".to_string(),
187 "Pack my box with five dozen liquor jugs".to_string(),
188 "How vexingly quick daft zebras jump!".to_string(),
189 "Bright vixens jump; dozy fowl quack".to_string(),
190 ];
191
192 println!("Running SIMD-accelerated operations with performance monitoring...");
193
194 // Start monitoring
195 let operation_monitor = self
196 .performance_monitor
197 .start_operation("simd_operations")?;
198
199 let start_time = Instant::now();
200
201 // Optimized text processing
202 let testtext_refs: Vec<&str> = testtexts.iter().map(|s| s.as_str()).collect();
203 let processed_results = AdvancedSIMDTextProcessor::advanced_batch_process(&testtext_refs);
204
205 // SIMD string operations
206 let char_counts: Vec<usize> = testtexts
207 .iter()
208 .map(|text| SimdStringOps::count_chars(text, 'o'))
209 .collect();
210
211 // Optimized similarity matrix
212 let similarity_matrix =
213 AdvancedSIMDTextProcessor::advanced_similarity_matrix(&testtext_refs);
214
215 let processing_time = start_time.elapsed();
216
217 // Complete monitoring
218 operation_monitor.complete(testtexts.len())?;
219
220 println!("\n📊 SIMD Operation Results:");
221 println!(" • Processing Time: {processing_time:?}");
222 println!(" • Documents Processed: {}", processed_results.len());
223 println!(" • Character Counts (letter 'o'): {char_counts:?}");
224 println!(
225 " • Similarity Matrix Size: {}x{}",
226 similarity_matrix.len(),
227 similarity_matrix[0].len()
228 );
229
230 // Display similarity matrix
231 println!("\n🔗 Text Similarity Matrix:");
232 for (i, row) in similarity_matrix.iter().enumerate() {
233 print!(" Row {i}: [");
234 for (j, &similarity) in row.iter().enumerate() {
235 if j > 0 {
236 print!(", ");
237 }
238 print!("{similarity:.3}");
239 }
240 println!("]");
241 }
242
243 // Show SIMD capabilities
244 println!("\n⚙️ SIMD Capabilities:");
245 println!(" • SIMD Available: {}", SimdStringOps::is_available());
246 println!(" • String Processing: Optimized");
247 println!(" • Pattern Matching: Optimized");
248 println!(" • Similarity Computation: Vectorized");
249
250 println!();
251 Ok(())
252 }
253
254 /// Demonstrate adaptive streaming processing
255 fn demo_adaptive_streaming(&self) -> Result<()> {
256 println!("🌊 Demo 3: Adaptive Streaming Processing");
257 println!("========================================");
258
259 // Create large dataset simulation
260 let largetexts: Vec<String> = (0..1000)
261 .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262 .collect();
263
264 println!(
265 "Processing {} documents through adaptive streaming...",
266 largetexts.len()
267 );
268
269 // Start monitoring
270 let operation_monitor = self
271 .performance_monitor
272 .start_operation("adaptive_streaming")?;
273
274 let start_time = Instant::now();
275
276 // Streaming processing with parallel optimization
277 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278 .with_parallelism(4, 1024 * 1024);
279
280 // Simple token counting for demonstration
281 let mut total_tokens = 0;
282 let tokenizer = WordTokenizer::default();
283 for text in &largetexts {
284 if let Ok(tokens) = tokenizer.tokenize(text) {
285 total_tokens += tokens.len();
286 }
287 }
288
289 let processing_time = start_time.elapsed();
290
291 // Complete monitoring
292 operation_monitor.complete(largetexts.len())?;
293
294 // Get memory stats instead of performance metrics
295 let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297 println!("\n📈 Streaming Processing Results:");
298 println!(" • Processing Time: {processing_time:?}");
299 println!(" • Documents Processed: {}", largetexts.len());
300 println!(" • Total Tokens Extracted: {total_tokens}");
301 println!(" • Current Memory Usage: {current_mem} bytes");
302 println!(" • Peak Memory Usage: {peak_mem} bytes");
303 println!(
304 " • Throughput: {:.2} docs/sec",
305 largetexts.len() as f64 / processing_time.as_secs_f64()
306 );
307
308 println!("\n🔄 Advanced Features:");
309 println!(" • Parallel Processing: Enabled");
310 println!(" • Memory Monitoring: Active");
311 println!(" • Advanced Tokenization: Optimized");
312
313 println!();
314 Ok(())
315 }Sourcepub fn with_parallelism(self, chunks: usize, buffersize: usize) -> Self
pub fn with_parallelism(self, chunks: usize, buffersize: usize) -> Self
Set parallel processing parameters
Examples found in repository?
examples/complete_integration.rs (line 278)
255 fn demo_adaptive_streaming(&self) -> Result<()> {
256 println!("🌊 Demo 3: Adaptive Streaming Processing");
257 println!("========================================");
258
259 // Create large dataset simulation
260 let largetexts: Vec<String> = (0..1000)
261 .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262 .collect();
263
264 println!(
265 "Processing {} documents through adaptive streaming...",
266 largetexts.len()
267 );
268
269 // Start monitoring
270 let operation_monitor = self
271 .performance_monitor
272 .start_operation("adaptive_streaming")?;
273
274 let start_time = Instant::now();
275
276 // Streaming processing with parallel optimization
277 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278 .with_parallelism(4, 1024 * 1024);
279
280 // Simple token counting for demonstration
281 let mut total_tokens = 0;
282 let tokenizer = WordTokenizer::default();
283 for text in &largetexts {
284 if let Ok(tokens) = tokenizer.tokenize(text) {
285 total_tokens += tokens.len();
286 }
287 }
288
289 let processing_time = start_time.elapsed();
290
291 // Complete monitoring
292 operation_monitor.complete(largetexts.len())?;
293
294 // Get memory stats instead of performance metrics
295 let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297 println!("\n📈 Streaming Processing Results:");
298 println!(" • Processing Time: {processing_time:?}");
299 println!(" • Documents Processed: {}", largetexts.len());
300 println!(" • Total Tokens Extracted: {total_tokens}");
301 println!(" • Current Memory Usage: {current_mem} bytes");
302 println!(" • Peak Memory Usage: {peak_mem} bytes");
303 println!(
304 " • Throughput: {:.2} docs/sec",
305 largetexts.len() as f64 / processing_time.as_secs_f64()
306 );
307
308 println!("\n🔄 Advanced Features:");
309 println!(" • Parallel Processing: Enabled");
310 println!(" • Memory Monitoring: Active");
311 println!(" • Advanced Tokenization: Optimized");
312
313 println!();
314 Ok(())
315 }Sourcepub fn process_corpus_parallel<F, R>(
&mut self,
corpus: &MemoryMappedCorpus,
processor: F,
) -> Result<Vec<R>>
pub fn process_corpus_parallel<F, R>( &mut self, corpus: &MemoryMappedCorpus, processor: F, ) -> Result<Vec<R>>
Process corpus with parallel memory-mapped chunks
Sourcepub fn build_corpus_statistics(
&mut self,
corpus: &MemoryMappedCorpus,
) -> Result<CorpusStatistics>
pub fn build_corpus_statistics( &mut self, corpus: &MemoryMappedCorpus, ) -> Result<CorpusStatistics>
Build advanced statistics from corpus
Sourcepub fn memory_stats(&self) -> (usize, usize)
pub fn memory_stats(&self) -> (usize, usize)
Get memory usage statistics
Examples found in repository?
examples/complete_integration.rs (line 295)
255 fn demo_adaptive_streaming(&self) -> Result<()> {
256 println!("🌊 Demo 3: Adaptive Streaming Processing");
257 println!("========================================");
258
259 // Create large dataset simulation
260 let largetexts: Vec<String> = (0..1000)
261 .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262 .collect();
263
264 println!(
265 "Processing {} documents through adaptive streaming...",
266 largetexts.len()
267 );
268
269 // Start monitoring
270 let operation_monitor = self
271 .performance_monitor
272 .start_operation("adaptive_streaming")?;
273
274 let start_time = Instant::now();
275
276 // Streaming processing with parallel optimization
277 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278 .with_parallelism(4, 1024 * 1024);
279
280 // Simple token counting for demonstration
281 let mut total_tokens = 0;
282 let tokenizer = WordTokenizer::default();
283 for text in &largetexts {
284 if let Ok(tokens) = tokenizer.tokenize(text) {
285 total_tokens += tokens.len();
286 }
287 }
288
289 let processing_time = start_time.elapsed();
290
291 // Complete monitoring
292 operation_monitor.complete(largetexts.len())?;
293
294 // Get memory stats instead of performance metrics
295 let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297 println!("\n📈 Streaming Processing Results:");
298 println!(" • Processing Time: {processing_time:?}");
299 println!(" • Documents Processed: {}", largetexts.len());
300 println!(" • Total Tokens Extracted: {total_tokens}");
301 println!(" • Current Memory Usage: {current_mem} bytes");
302 println!(" • Peak Memory Usage: {peak_mem} bytes");
303 println!(
304 " • Throughput: {:.2} docs/sec",
305 largetexts.len() as f64 / processing_time.as_secs_f64()
306 );
307
308 println!("\n🔄 Advanced Features:");
309 println!(" • Parallel Processing: Enabled");
310 println!(" • Memory Monitoring: Active");
311 println!(" • Advanced Tokenization: Optimized");
312
313 println!();
314 Ok(())
315 }Auto Trait Implementations§
impl<T> Freeze for AdvancedStreamingProcessor<T>where
T: Freeze,
impl<T> RefUnwindSafe for AdvancedStreamingProcessor<T>where
T: RefUnwindSafe,
impl<T> Send for AdvancedStreamingProcessor<T>where
T: Send,
impl<T> Sync for AdvancedStreamingProcessor<T>where
T: Sync,
impl<T> Unpin for AdvancedStreamingProcessor<T>where
T: Unpin,
impl<T> UnwindSafe for AdvancedStreamingProcessor<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.