Skip to main content

AdvancedStreamingProcessor

Struct AdvancedStreamingProcessor 

Source
pub struct AdvancedStreamingProcessor<T: Tokenizer> { /* private fields */ }
Expand description

Advanced streaming processor with parallel processing and monitoring

Implementations§

Source§

impl<T: Tokenizer + Send + Sync> AdvancedStreamingProcessor<T>

Source

pub fn new(tokenizer: T) -> Self

Create new advanced streaming processor

Examples found in repository?
examples/complete_integration.rs (line 86)
57    fn new() -> Result<Self> {
58        println!("🔧 Initializing Complete Advanced System...");
59
60        // Configure Advanced mode with optimized settings
61        let config = AdvancedTextConfig {
62            enable_gpu_acceleration: true,
63            enable_simd_optimizations: true,
64            enable_neural_ensemble: true,
65            enable_real_time_adaptation: true,
66            enable_advanced_analytics: true,
67            enable_multimodal: true,
68            max_memory_usage_mb: 8192,
69            optimization_level: 3,
70            target_throughput: 5000.0,
71            enable_predictive_processing: true,
72        };
73
74        // Performance monitoring with strict thresholds
75        let perf_thresholds = PerformanceThresholds {
76            max_processing_time_ms: 500, // 500ms max
77            min_throughput: 1000.0,      // 1000 docs/sec min
78            max_memory_usage_mb: 6144,   // 6GB max
79            max_cpu_utilization: 85.0,   // 85% max
80            min_cache_hit_rate: 0.85,    // 85% min
81        };
82
83        let coordinator = AdvancedTextCoordinator::new(config)?;
84        let performance_monitor = AdvancedPerformanceMonitor::with_thresholds(perf_thresholds);
85        let simd_processor = AdvancedSIMDTextProcessor;
86        let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default());
87
88        println!("✅ Advanced System initialized successfully!\n");
89
90        Ok(Self {
91            coordinator,
92            performance_monitor,
93            simd_processor,
94            streaming_processor,
95        })
96    }
97
98    /// Run the complete demonstration
99    fn run_complete_demo(&self) -> Result<()> {
100        // Demo 1: Integrated Text Processing Pipeline
101        self.demo_integrated_pipeline()?;
102
103        // Demo 2: Performance-Monitored SIMD Operations
104        self.demo_performance_monitored_simd()?;
105
106        // Demo 3: Adaptive Streaming Processing
107        self.demo_adaptive_streaming()?;
108
109        // Demo 4: Real-time Optimization and Adaptation
110        self.demo_realtime_optimization()?;
111
112        // Demo 5: Comprehensive System Analytics
113        self.demo_system_analytics()?;
114
115        Ok(())
116    }
117
118    /// Demonstrate integrated text processing pipeline
119    fn demo_integrated_pipeline(&self) -> Result<()> {
120        println!("📊 Demo 1: Integrated Text Processing Pipeline");
121        println!("==============================================");
122
123        let sample_documents = vec![
124            "Artificial intelligence is revolutionizing the field of natural language processing.".to_string(),
125            "Machine learning algorithms can now understand context and semantic meaning in text.".to_string(),
126            "Deep neural networks have enabled breakthrough performance in text classification tasks.".to_string(),
127            "SIMD optimizations allow for optimized string processing in modern computing systems.".to_string(),
128            "Real-time adaptation ensures optimal performance across diverse text processing workloads.".to_string(),
129        ];
130
131        println!(
132            "Processing {} documents through integrated pipeline...",
133            sample_documents.len()
134        );
135
136        // Start performance monitoring
137        let operation_monitor = self
138            .performance_monitor
139            .start_operation("integrated_pipeline")?;
140
141        let start_time = Instant::now();
142
143        // Process through Advanced coordinator
144        let result = self.coordinator.advanced_processtext(&sample_documents)?;
145
146        let processing_time = start_time.elapsed();
147
148        // Complete monitoring
149        operation_monitor.complete(sample_documents.len())?;
150
151        println!("\n📈 Pipeline Results:");
152        println!("  • Processing Time: {processing_time:?}");
153        println!(
154            "  • Throughput: {:.2} docs/sec",
155            result.performance_metrics.throughput
156        );
157        println!(
158            "  • Memory Efficiency: {:.1}%",
159            result.performance_metrics.memory_efficiency * 100.0
160        );
161        println!(
162            "  • Accuracy Estimate: {:.1}%",
163            result.performance_metrics.accuracy_estimate * 100.0
164        );
165
166        println!("\n🔧 Applied Optimizations:");
167        for optimization in &result.optimizations_applied {
168            println!("  • {optimization}");
169        }
170
171        println!("\n🎯 Confidence Scores:");
172        for (metric, score) in &result.confidence_scores {
173            println!("  • {}: {:.1}%", metric, score * 100.0);
174        }
175
176        println!();
177        Ok(())
178    }
179
180    /// Demonstrate performance-monitored SIMD operations
181    fn demo_performance_monitored_simd(&self) -> Result<()> {
182        println!("⚡ Demo 2: Performance-Monitored SIMD Operations");
183        println!("===============================================");
184
185        let testtexts = [
186            "The quick brown fox jumps over the lazy dog".to_string(),
187            "Pack my box with five dozen liquor jugs".to_string(),
188            "How vexingly quick daft zebras jump!".to_string(),
189            "Bright vixens jump; dozy fowl quack".to_string(),
190        ];
191
192        println!("Running SIMD-accelerated operations with performance monitoring...");
193
194        // Start monitoring
195        let operation_monitor = self
196            .performance_monitor
197            .start_operation("simd_operations")?;
198
199        let start_time = Instant::now();
200
201        // Optimized text processing
202        let testtext_refs: Vec<&str> = testtexts.iter().map(|s| s.as_str()).collect();
203        let processed_results = AdvancedSIMDTextProcessor::advanced_batch_process(&testtext_refs);
204
205        // SIMD string operations
206        let char_counts: Vec<usize> = testtexts
207            .iter()
208            .map(|text| SimdStringOps::count_chars(text, 'o'))
209            .collect();
210
211        // Optimized similarity matrix
212        let similarity_matrix =
213            AdvancedSIMDTextProcessor::advanced_similarity_matrix(&testtext_refs);
214
215        let processing_time = start_time.elapsed();
216
217        // Complete monitoring
218        operation_monitor.complete(testtexts.len())?;
219
220        println!("\n📊 SIMD Operation Results:");
221        println!("  • Processing Time: {processing_time:?}");
222        println!("  • Documents Processed: {}", processed_results.len());
223        println!("  • Character Counts (letter 'o'): {char_counts:?}");
224        println!(
225            "  • Similarity Matrix Size: {}x{}",
226            similarity_matrix.len(),
227            similarity_matrix[0].len()
228        );
229
230        // Display similarity matrix
231        println!("\n🔗 Text Similarity Matrix:");
232        for (i, row) in similarity_matrix.iter().enumerate() {
233            print!("  Row {i}: [");
234            for (j, &similarity) in row.iter().enumerate() {
235                if j > 0 {
236                    print!(", ");
237                }
238                print!("{similarity:.3}");
239            }
240            println!("]");
241        }
242
243        // Show SIMD capabilities
244        println!("\n⚙️  SIMD Capabilities:");
245        println!("  • SIMD Available: {}", SimdStringOps::is_available());
246        println!("  • String Processing: Optimized");
247        println!("  • Pattern Matching: Optimized");
248        println!("  • Similarity Computation: Vectorized");
249
250        println!();
251        Ok(())
252    }
253
254    /// Demonstrate adaptive streaming processing
255    fn demo_adaptive_streaming(&self) -> Result<()> {
256        println!("🌊 Demo 3: Adaptive Streaming Processing");
257        println!("========================================");
258
259        // Create large dataset simulation
260        let largetexts: Vec<String> = (0..1000)
261            .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262            .collect();
263
264        println!(
265            "Processing {} documents through adaptive streaming...",
266            largetexts.len()
267        );
268
269        // Start monitoring
270        let operation_monitor = self
271            .performance_monitor
272            .start_operation("adaptive_streaming")?;
273
274        let start_time = Instant::now();
275
276        // Streaming processing with parallel optimization
277        let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278            .with_parallelism(4, 1024 * 1024);
279
280        // Simple token counting for demonstration
281        let mut total_tokens = 0;
282        let tokenizer = WordTokenizer::default();
283        for text in &largetexts {
284            if let Ok(tokens) = tokenizer.tokenize(text) {
285                total_tokens += tokens.len();
286            }
287        }
288
289        let processing_time = start_time.elapsed();
290
291        // Complete monitoring
292        operation_monitor.complete(largetexts.len())?;
293
294        // Get memory stats instead of performance metrics
295        let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297        println!("\n📈 Streaming Processing Results:");
298        println!("  • Processing Time: {processing_time:?}");
299        println!("  • Documents Processed: {}", largetexts.len());
300        println!("  • Total Tokens Extracted: {total_tokens}");
301        println!("  • Current Memory Usage: {current_mem} bytes");
302        println!("  • Peak Memory Usage: {peak_mem} bytes");
303        println!(
304            "  • Throughput: {:.2} docs/sec",
305            largetexts.len() as f64 / processing_time.as_secs_f64()
306        );
307
308        println!("\n🔄 Advanced Features:");
309        println!("  • Parallel Processing: Enabled");
310        println!("  • Memory Monitoring: Active");
311        println!("  • Advanced Tokenization: Optimized");
312
313        println!();
314        Ok(())
315    }
Source

pub fn with_parallelism(self, chunks: usize, buffersize: usize) -> Self

Set parallel processing parameters

Examples found in repository?
examples/complete_integration.rs (line 278)
255    fn demo_adaptive_streaming(&self) -> Result<()> {
256        println!("🌊 Demo 3: Adaptive Streaming Processing");
257        println!("========================================");
258
259        // Create large dataset simulation
260        let largetexts: Vec<String> = (0..1000)
261            .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262            .collect();
263
264        println!(
265            "Processing {} documents through adaptive streaming...",
266            largetexts.len()
267        );
268
269        // Start monitoring
270        let operation_monitor = self
271            .performance_monitor
272            .start_operation("adaptive_streaming")?;
273
274        let start_time = Instant::now();
275
276        // Streaming processing with parallel optimization
277        let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278            .with_parallelism(4, 1024 * 1024);
279
280        // Simple token counting for demonstration
281        let mut total_tokens = 0;
282        let tokenizer = WordTokenizer::default();
283        for text in &largetexts {
284            if let Ok(tokens) = tokenizer.tokenize(text) {
285                total_tokens += tokens.len();
286            }
287        }
288
289        let processing_time = start_time.elapsed();
290
291        // Complete monitoring
292        operation_monitor.complete(largetexts.len())?;
293
294        // Get memory stats instead of performance metrics
295        let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297        println!("\n📈 Streaming Processing Results:");
298        println!("  • Processing Time: {processing_time:?}");
299        println!("  • Documents Processed: {}", largetexts.len());
300        println!("  • Total Tokens Extracted: {total_tokens}");
301        println!("  • Current Memory Usage: {current_mem} bytes");
302        println!("  • Peak Memory Usage: {peak_mem} bytes");
303        println!(
304            "  • Throughput: {:.2} docs/sec",
305            largetexts.len() as f64 / processing_time.as_secs_f64()
306        );
307
308        println!("\n🔄 Advanced Features:");
309        println!("  • Parallel Processing: Enabled");
310        println!("  • Memory Monitoring: Active");
311        println!("  • Advanced Tokenization: Optimized");
312
313        println!();
314        Ok(())
315    }
Source

pub fn process_corpus_parallel<F, R>( &mut self, corpus: &MemoryMappedCorpus, processor: F, ) -> Result<Vec<R>>
where F: Fn(&str, usize) -> Result<R> + Send + Sync, R: Send,

Process corpus with parallel memory-mapped chunks

Source

pub fn build_corpus_statistics( &mut self, corpus: &MemoryMappedCorpus, ) -> Result<CorpusStatistics>

Build advanced statistics from corpus

Source

pub fn memory_stats(&self) -> (usize, usize)

Get memory usage statistics

Examples found in repository?
examples/complete_integration.rs (line 295)
255    fn demo_adaptive_streaming(&self) -> Result<()> {
256        println!("🌊 Demo 3: Adaptive Streaming Processing");
257        println!("========================================");
258
259        // Create large dataset simulation
260        let largetexts: Vec<String> = (0..1000)
261            .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262            .collect();
263
264        println!(
265            "Processing {} documents through adaptive streaming...",
266            largetexts.len()
267        );
268
269        // Start monitoring
270        let operation_monitor = self
271            .performance_monitor
272            .start_operation("adaptive_streaming")?;
273
274        let start_time = Instant::now();
275
276        // Streaming processing with parallel optimization
277        let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278            .with_parallelism(4, 1024 * 1024);
279
280        // Simple token counting for demonstration
281        let mut total_tokens = 0;
282        let tokenizer = WordTokenizer::default();
283        for text in &largetexts {
284            if let Ok(tokens) = tokenizer.tokenize(text) {
285                total_tokens += tokens.len();
286            }
287        }
288
289        let processing_time = start_time.elapsed();
290
291        // Complete monitoring
292        operation_monitor.complete(largetexts.len())?;
293
294        // Get memory stats instead of performance metrics
295        let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297        println!("\n📈 Streaming Processing Results:");
298        println!("  • Processing Time: {processing_time:?}");
299        println!("  • Documents Processed: {}", largetexts.len());
300        println!("  • Total Tokens Extracted: {total_tokens}");
301        println!("  • Current Memory Usage: {current_mem} bytes");
302        println!("  • Peak Memory Usage: {peak_mem} bytes");
303        println!(
304            "  • Throughput: {:.2} docs/sec",
305            largetexts.len() as f64 / processing_time.as_secs_f64()
306        );
307
308        println!("\n🔄 Advanced Features:");
309        println!("  • Parallel Processing: Enabled");
310        println!("  • Memory Monitoring: Active");
311        println!("  • Advanced Tokenization: Optimized");
312
313        println!();
314        Ok(())
315    }

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V