pub struct ParallelTokenizer<T: Tokenizer + Send + Sync> { /* private fields */ }Expand description
Parallel tokenizer
Implementations§
Source§impl<T: Tokenizer + Send + Sync> ParallelTokenizer<T>
impl<T: Tokenizer + Send + Sync> ParallelTokenizer<T>
Sourcepub fn new(tokenizer: T) -> Self
pub fn new(tokenizer: T) -> Self
Create a new parallel tokenizer
Examples found in repository?
examples/parallel_processing_demo.rs (line 61)
10fn main() -> Result<(), Box<dyn std::error::Error>> {
11 println!("Parallel Text Processing Demo");
12 println!("============================\n");
13
14 // Create test data with larger size to demonstrate parallelism
15 println!("Creating test data...");
16 let texts = create_testtexts(1000);
17
18 // Create references to handle &[&str] requirements
19 let text_refs: Vec<&str> = texts.iter().map(|s| s.as_str()).collect();
20
21 println!("Total documents: {}", texts.len());
22 println!("Example document: {}", texts[0]);
23
24 // 1. Simple Parallel Text Processing
25 println!("\n1. Basic Parallel Processing");
26 println!("---------------------------");
27
28 let processor = ParallelTextProcessor::new();
29
30 let start = Instant::now();
31 let word_counts = processor.process(&text_refs, |text| {
32 // Count words in each document
33 text.split_whitespace().count()
34 });
35 let duration = start.elapsed();
36
37 println!("Processed {} documents in {:.2?}", texts.len(), duration);
38 println!(
39 "Average word count: {:.2}",
40 word_counts.iter().sum::<usize>() as f64 / word_counts.len() as f64
41 );
42
43 // Sequential comparison
44 let start = Instant::now();
45 let _seq_word_counts: Vec<_> = texts
46 .iter()
47 .map(|text| text.split_whitespace().count())
48 .collect();
49 let seq_duration = start.elapsed();
50
51 println!("Sequential processing took {seq_duration:.2?}");
52 println!(
53 "Speedup factor: {:.2}x",
54 seq_duration.as_secs_f64() / duration.as_secs_f64()
55 );
56
57 // 2. Parallel Tokenization
58 println!("\n2. Parallel Tokenization");
59 println!("----------------------");
60
61 let tokenizer = ParallelTokenizer::new(WordTokenizer::new(true)); // Pass 'lowercase' parameter
62
63 let start = Instant::now();
64 let tokens = tokenizer.tokenize(&text_refs)?;
65 let duration = start.elapsed();
66
67 println!("Tokenized {} documents in {:.2?}", texts.len(), duration);
68 println!(
69 "Total tokens: {}",
70 tokens.iter().map(|t| t.len()).sum::<usize>()
71 );
72 println!(
73 "Sample tokens from first document: {:?}",
74 tokens[0].iter().take(5).collect::<Vec<_>>()
75 );
76
77 // Custom token processing
78 println!("\nCustom token processing...");
79 let start = Instant::now();
80 let token_stats = tokenizer.tokenize_and_map(&text_refs, |tokens| {
81 // Calculate token statistics
82 let count = tokens.len();
83 let avg_len = if count > 0 {
84 tokens.iter().map(|t| t.len()).sum::<usize>() as f64 / count as f64
85 } else {
86 0.0
87 };
88 (count, avg_len)
89 })?;
90 let duration = start.elapsed();
91
92 println!("Processed token statistics in {duration:.2?}");
93 println!(
94 "Average tokens per document: {:.2}",
95 token_stats.iter().map(|(count_, _)| *count_).sum::<usize>() as f64
96 / token_stats.len() as f64
97 );
98 println!(
99 "Average token length: {:.2}",
100 token_stats.iter().map(|(_, avg_len)| *avg_len).sum::<f64>() / token_stats.len() as f64
101 );
102
103 // 3. Parallel Vectorization
104 println!("\n3. Parallel Vectorization");
105 println!("------------------------");
106
107 // First fit the vectorizer
108 let mut vectorizer = TfidfVectorizer::default();
109 let start = Instant::now();
110
111 // Import the Vectorizer trait to use its methods
112 use scirs2_text::Vectorizer;
113 vectorizer.fit(&text_refs)?;
114 let fit_duration = start.elapsed();
115
116 println!("Fitted vectorizer in {fit_duration:.2?}");
117
118 // Now transform in parallel
119 let parallel_vectorizer = ParallelVectorizer::new(vectorizer).with_chunk_size(100);
120
121 let start = Instant::now();
122 let vectors = parallel_vectorizer.transform(&text_refs)?;
123 let transform_duration = start.elapsed();
124
125 println!(
126 "Transformed {} documents in {:.2?}",
127 texts.len(),
128 transform_duration
129 );
130 println!("Vector shape: {:?}", vectors.shape());
131 println!(
132 "Non-zero elements: {}",
133 vectors.iter().filter(|&&x| x > 0.0).count()
134 );
135
136 // 4. Batch Processing with Progress
137 println!("\n4. Batch Processing with Progress");
138 println!("--------------------------------");
139
140 let processor = ParallelCorpusProcessor::new(100).with_threads(num_cpus::get());
141
142 println!("Processing with {} threads...", num_cpus::get());
143 let start = Instant::now();
144
145 let last_progress = std::sync::Mutex::new(0);
146 let result = processor.process_with_progress(
147 &text_refs,
148 |batch| {
149 // Analyze batch of documents
150 let mut word_counts = Vec::new();
151 let mut char_counts = Vec::new();
152
153 for &text in batch {
154 word_counts.push(text.split_whitespace().count());
155 char_counts.push(text.chars().count());
156 }
157
158 Ok(word_counts.into_iter().zip(char_counts).collect::<Vec<_>>())
159 },
160 |current, total| {
161 // Only print progress updates at 10% intervals
162 let percent = current * 100 / total;
163 let mut last = last_progress.lock().unwrap();
164 if percent / 10 > *last / 10 {
165 println!(" Progress: {current}/{total} ({percent}%)");
166 *last = percent;
167 }
168 },
169 )?;
170
171 let duration = start.elapsed();
172
173 println!("Processed {} documents in {:.2?}", texts.len(), duration);
174 println!(
175 "Average words per document: {:.2}",
176 result.iter().map(|(words_, _)| *words_).sum::<usize>() as f64 / result.len() as f64
177 );
178 println!(
179 "Average characters per document: {:.2}",
180 result.iter().map(|(_, chars)| chars).sum::<usize>() as f64 / result.len() as f64
181 );
182
183 // 5. Memory-efficient processing
184 println!("\n5. Memory-Efficient Large Corpus Processing");
185 println!("------------------------------------------");
186
187 println!("Simulating processing of a large corpus...");
188 let largetexts: Vec<&str> = text_refs.iter().cycle().take(5000).copied().collect();
189 println!("Large corpus size: {} documents", largetexts.len());
190
191 let processor = ParallelCorpusProcessor::new(250).with_max_memory(1024 * 1024 * 1024); // 1 GB limit
192
193 let start = Instant::now();
194 let summary = processor.process(&largetexts, |batch| {
195 // Compute simple statistics for the batch
196 let batch_size = batch.len();
197 let total_words: usize = batch
198 .iter()
199 .map(|&text| text.split_whitespace().count())
200 .sum();
201 let total_chars: usize = batch.iter().map(|&text| text.chars().count()).sum();
202
203 Ok(vec![(batch_size, total_words, total_chars)])
204 })?;
205 let duration = start.elapsed();
206
207 let total_words: usize = summary.iter().map(|(_, words_, _)| *words_).sum();
208 let total_chars: usize = summary.iter().map(|(_, _, chars)| *chars).sum();
209
210 println!("Processed large corpus in {duration:.2?}");
211 println!("Total words: {total_words}");
212 println!("Total chars: {total_chars}");
213 println!(
214 "Average processing speed: {:.2} documents/second",
215 largetexts.len() as f64 / duration.as_secs_f64()
216 );
217
218 Ok(())
219}Sourcepub fn with_chunk_size(self, chunksize: usize) -> Self
pub fn with_chunk_size(self, chunksize: usize) -> Self
Set the chunk size
Sourcepub fn tokenize(&self, texts: &[&str]) -> Result<Vec<Vec<String>>>
pub fn tokenize(&self, texts: &[&str]) -> Result<Vec<Vec<String>>>
Tokenize texts in parallel
Examples found in repository?
examples/parallel_processing_demo.rs (line 64)
10fn main() -> Result<(), Box<dyn std::error::Error>> {
11 println!("Parallel Text Processing Demo");
12 println!("============================\n");
13
14 // Create test data with larger size to demonstrate parallelism
15 println!("Creating test data...");
16 let texts = create_testtexts(1000);
17
18 // Create references to handle &[&str] requirements
19 let text_refs: Vec<&str> = texts.iter().map(|s| s.as_str()).collect();
20
21 println!("Total documents: {}", texts.len());
22 println!("Example document: {}", texts[0]);
23
24 // 1. Simple Parallel Text Processing
25 println!("\n1. Basic Parallel Processing");
26 println!("---------------------------");
27
28 let processor = ParallelTextProcessor::new();
29
30 let start = Instant::now();
31 let word_counts = processor.process(&text_refs, |text| {
32 // Count words in each document
33 text.split_whitespace().count()
34 });
35 let duration = start.elapsed();
36
37 println!("Processed {} documents in {:.2?}", texts.len(), duration);
38 println!(
39 "Average word count: {:.2}",
40 word_counts.iter().sum::<usize>() as f64 / word_counts.len() as f64
41 );
42
43 // Sequential comparison
44 let start = Instant::now();
45 let _seq_word_counts: Vec<_> = texts
46 .iter()
47 .map(|text| text.split_whitespace().count())
48 .collect();
49 let seq_duration = start.elapsed();
50
51 println!("Sequential processing took {seq_duration:.2?}");
52 println!(
53 "Speedup factor: {:.2}x",
54 seq_duration.as_secs_f64() / duration.as_secs_f64()
55 );
56
57 // 2. Parallel Tokenization
58 println!("\n2. Parallel Tokenization");
59 println!("----------------------");
60
61 let tokenizer = ParallelTokenizer::new(WordTokenizer::new(true)); // Pass 'lowercase' parameter
62
63 let start = Instant::now();
64 let tokens = tokenizer.tokenize(&text_refs)?;
65 let duration = start.elapsed();
66
67 println!("Tokenized {} documents in {:.2?}", texts.len(), duration);
68 println!(
69 "Total tokens: {}",
70 tokens.iter().map(|t| t.len()).sum::<usize>()
71 );
72 println!(
73 "Sample tokens from first document: {:?}",
74 tokens[0].iter().take(5).collect::<Vec<_>>()
75 );
76
77 // Custom token processing
78 println!("\nCustom token processing...");
79 let start = Instant::now();
80 let token_stats = tokenizer.tokenize_and_map(&text_refs, |tokens| {
81 // Calculate token statistics
82 let count = tokens.len();
83 let avg_len = if count > 0 {
84 tokens.iter().map(|t| t.len()).sum::<usize>() as f64 / count as f64
85 } else {
86 0.0
87 };
88 (count, avg_len)
89 })?;
90 let duration = start.elapsed();
91
92 println!("Processed token statistics in {duration:.2?}");
93 println!(
94 "Average tokens per document: {:.2}",
95 token_stats.iter().map(|(count_, _)| *count_).sum::<usize>() as f64
96 / token_stats.len() as f64
97 );
98 println!(
99 "Average token length: {:.2}",
100 token_stats.iter().map(|(_, avg_len)| *avg_len).sum::<f64>() / token_stats.len() as f64
101 );
102
103 // 3. Parallel Vectorization
104 println!("\n3. Parallel Vectorization");
105 println!("------------------------");
106
107 // First fit the vectorizer
108 let mut vectorizer = TfidfVectorizer::default();
109 let start = Instant::now();
110
111 // Import the Vectorizer trait to use its methods
112 use scirs2_text::Vectorizer;
113 vectorizer.fit(&text_refs)?;
114 let fit_duration = start.elapsed();
115
116 println!("Fitted vectorizer in {fit_duration:.2?}");
117
118 // Now transform in parallel
119 let parallel_vectorizer = ParallelVectorizer::new(vectorizer).with_chunk_size(100);
120
121 let start = Instant::now();
122 let vectors = parallel_vectorizer.transform(&text_refs)?;
123 let transform_duration = start.elapsed();
124
125 println!(
126 "Transformed {} documents in {:.2?}",
127 texts.len(),
128 transform_duration
129 );
130 println!("Vector shape: {:?}", vectors.shape());
131 println!(
132 "Non-zero elements: {}",
133 vectors.iter().filter(|&&x| x > 0.0).count()
134 );
135
136 // 4. Batch Processing with Progress
137 println!("\n4. Batch Processing with Progress");
138 println!("--------------------------------");
139
140 let processor = ParallelCorpusProcessor::new(100).with_threads(num_cpus::get());
141
142 println!("Processing with {} threads...", num_cpus::get());
143 let start = Instant::now();
144
145 let last_progress = std::sync::Mutex::new(0);
146 let result = processor.process_with_progress(
147 &text_refs,
148 |batch| {
149 // Analyze batch of documents
150 let mut word_counts = Vec::new();
151 let mut char_counts = Vec::new();
152
153 for &text in batch {
154 word_counts.push(text.split_whitespace().count());
155 char_counts.push(text.chars().count());
156 }
157
158 Ok(word_counts.into_iter().zip(char_counts).collect::<Vec<_>>())
159 },
160 |current, total| {
161 // Only print progress updates at 10% intervals
162 let percent = current * 100 / total;
163 let mut last = last_progress.lock().unwrap();
164 if percent / 10 > *last / 10 {
165 println!(" Progress: {current}/{total} ({percent}%)");
166 *last = percent;
167 }
168 },
169 )?;
170
171 let duration = start.elapsed();
172
173 println!("Processed {} documents in {:.2?}", texts.len(), duration);
174 println!(
175 "Average words per document: {:.2}",
176 result.iter().map(|(words_, _)| *words_).sum::<usize>() as f64 / result.len() as f64
177 );
178 println!(
179 "Average characters per document: {:.2}",
180 result.iter().map(|(_, chars)| chars).sum::<usize>() as f64 / result.len() as f64
181 );
182
183 // 5. Memory-efficient processing
184 println!("\n5. Memory-Efficient Large Corpus Processing");
185 println!("------------------------------------------");
186
187 println!("Simulating processing of a large corpus...");
188 let largetexts: Vec<&str> = text_refs.iter().cycle().take(5000).copied().collect();
189 println!("Large corpus size: {} documents", largetexts.len());
190
191 let processor = ParallelCorpusProcessor::new(250).with_max_memory(1024 * 1024 * 1024); // 1 GB limit
192
193 let start = Instant::now();
194 let summary = processor.process(&largetexts, |batch| {
195 // Compute simple statistics for the batch
196 let batch_size = batch.len();
197 let total_words: usize = batch
198 .iter()
199 .map(|&text| text.split_whitespace().count())
200 .sum();
201 let total_chars: usize = batch.iter().map(|&text| text.chars().count()).sum();
202
203 Ok(vec![(batch_size, total_words, total_chars)])
204 })?;
205 let duration = start.elapsed();
206
207 let total_words: usize = summary.iter().map(|(_, words_, _)| *words_).sum();
208 let total_chars: usize = summary.iter().map(|(_, _, chars)| *chars).sum();
209
210 println!("Processed large corpus in {duration:.2?}");
211 println!("Total words: {total_words}");
212 println!("Total chars: {total_chars}");
213 println!(
214 "Average processing speed: {:.2} documents/second",
215 largetexts.len() as f64 / duration.as_secs_f64()
216 );
217
218 Ok(())
219}Sourcepub fn tokenize_and_map<F, R>(
&self,
texts: &[&str],
mapper: F,
) -> Result<Vec<R>>
pub fn tokenize_and_map<F, R>( &self, texts: &[&str], mapper: F, ) -> Result<Vec<R>>
Tokenize texts in parallel and apply a mapper function
Examples found in repository?
examples/parallel_processing_demo.rs (lines 80-89)
10fn main() -> Result<(), Box<dyn std::error::Error>> {
11 println!("Parallel Text Processing Demo");
12 println!("============================\n");
13
14 // Create test data with larger size to demonstrate parallelism
15 println!("Creating test data...");
16 let texts = create_testtexts(1000);
17
18 // Create references to handle &[&str] requirements
19 let text_refs: Vec<&str> = texts.iter().map(|s| s.as_str()).collect();
20
21 println!("Total documents: {}", texts.len());
22 println!("Example document: {}", texts[0]);
23
24 // 1. Simple Parallel Text Processing
25 println!("\n1. Basic Parallel Processing");
26 println!("---------------------------");
27
28 let processor = ParallelTextProcessor::new();
29
30 let start = Instant::now();
31 let word_counts = processor.process(&text_refs, |text| {
32 // Count words in each document
33 text.split_whitespace().count()
34 });
35 let duration = start.elapsed();
36
37 println!("Processed {} documents in {:.2?}", texts.len(), duration);
38 println!(
39 "Average word count: {:.2}",
40 word_counts.iter().sum::<usize>() as f64 / word_counts.len() as f64
41 );
42
43 // Sequential comparison
44 let start = Instant::now();
45 let _seq_word_counts: Vec<_> = texts
46 .iter()
47 .map(|text| text.split_whitespace().count())
48 .collect();
49 let seq_duration = start.elapsed();
50
51 println!("Sequential processing took {seq_duration:.2?}");
52 println!(
53 "Speedup factor: {:.2}x",
54 seq_duration.as_secs_f64() / duration.as_secs_f64()
55 );
56
57 // 2. Parallel Tokenization
58 println!("\n2. Parallel Tokenization");
59 println!("----------------------");
60
61 let tokenizer = ParallelTokenizer::new(WordTokenizer::new(true)); // Pass 'lowercase' parameter
62
63 let start = Instant::now();
64 let tokens = tokenizer.tokenize(&text_refs)?;
65 let duration = start.elapsed();
66
67 println!("Tokenized {} documents in {:.2?}", texts.len(), duration);
68 println!(
69 "Total tokens: {}",
70 tokens.iter().map(|t| t.len()).sum::<usize>()
71 );
72 println!(
73 "Sample tokens from first document: {:?}",
74 tokens[0].iter().take(5).collect::<Vec<_>>()
75 );
76
77 // Custom token processing
78 println!("\nCustom token processing...");
79 let start = Instant::now();
80 let token_stats = tokenizer.tokenize_and_map(&text_refs, |tokens| {
81 // Calculate token statistics
82 let count = tokens.len();
83 let avg_len = if count > 0 {
84 tokens.iter().map(|t| t.len()).sum::<usize>() as f64 / count as f64
85 } else {
86 0.0
87 };
88 (count, avg_len)
89 })?;
90 let duration = start.elapsed();
91
92 println!("Processed token statistics in {duration:.2?}");
93 println!(
94 "Average tokens per document: {:.2}",
95 token_stats.iter().map(|(count_, _)| *count_).sum::<usize>() as f64
96 / token_stats.len() as f64
97 );
98 println!(
99 "Average token length: {:.2}",
100 token_stats.iter().map(|(_, avg_len)| *avg_len).sum::<f64>() / token_stats.len() as f64
101 );
102
103 // 3. Parallel Vectorization
104 println!("\n3. Parallel Vectorization");
105 println!("------------------------");
106
107 // First fit the vectorizer
108 let mut vectorizer = TfidfVectorizer::default();
109 let start = Instant::now();
110
111 // Import the Vectorizer trait to use its methods
112 use scirs2_text::Vectorizer;
113 vectorizer.fit(&text_refs)?;
114 let fit_duration = start.elapsed();
115
116 println!("Fitted vectorizer in {fit_duration:.2?}");
117
118 // Now transform in parallel
119 let parallel_vectorizer = ParallelVectorizer::new(vectorizer).with_chunk_size(100);
120
121 let start = Instant::now();
122 let vectors = parallel_vectorizer.transform(&text_refs)?;
123 let transform_duration = start.elapsed();
124
125 println!(
126 "Transformed {} documents in {:.2?}",
127 texts.len(),
128 transform_duration
129 );
130 println!("Vector shape: {:?}", vectors.shape());
131 println!(
132 "Non-zero elements: {}",
133 vectors.iter().filter(|&&x| x > 0.0).count()
134 );
135
136 // 4. Batch Processing with Progress
137 println!("\n4. Batch Processing with Progress");
138 println!("--------------------------------");
139
140 let processor = ParallelCorpusProcessor::new(100).with_threads(num_cpus::get());
141
142 println!("Processing with {} threads...", num_cpus::get());
143 let start = Instant::now();
144
145 let last_progress = std::sync::Mutex::new(0);
146 let result = processor.process_with_progress(
147 &text_refs,
148 |batch| {
149 // Analyze batch of documents
150 let mut word_counts = Vec::new();
151 let mut char_counts = Vec::new();
152
153 for &text in batch {
154 word_counts.push(text.split_whitespace().count());
155 char_counts.push(text.chars().count());
156 }
157
158 Ok(word_counts.into_iter().zip(char_counts).collect::<Vec<_>>())
159 },
160 |current, total| {
161 // Only print progress updates at 10% intervals
162 let percent = current * 100 / total;
163 let mut last = last_progress.lock().unwrap();
164 if percent / 10 > *last / 10 {
165 println!(" Progress: {current}/{total} ({percent}%)");
166 *last = percent;
167 }
168 },
169 )?;
170
171 let duration = start.elapsed();
172
173 println!("Processed {} documents in {:.2?}", texts.len(), duration);
174 println!(
175 "Average words per document: {:.2}",
176 result.iter().map(|(words_, _)| *words_).sum::<usize>() as f64 / result.len() as f64
177 );
178 println!(
179 "Average characters per document: {:.2}",
180 result.iter().map(|(_, chars)| chars).sum::<usize>() as f64 / result.len() as f64
181 );
182
183 // 5. Memory-efficient processing
184 println!("\n5. Memory-Efficient Large Corpus Processing");
185 println!("------------------------------------------");
186
187 println!("Simulating processing of a large corpus...");
188 let largetexts: Vec<&str> = text_refs.iter().cycle().take(5000).copied().collect();
189 println!("Large corpus size: {} documents", largetexts.len());
190
191 let processor = ParallelCorpusProcessor::new(250).with_max_memory(1024 * 1024 * 1024); // 1 GB limit
192
193 let start = Instant::now();
194 let summary = processor.process(&largetexts, |batch| {
195 // Compute simple statistics for the batch
196 let batch_size = batch.len();
197 let total_words: usize = batch
198 .iter()
199 .map(|&text| text.split_whitespace().count())
200 .sum();
201 let total_chars: usize = batch.iter().map(|&text| text.chars().count()).sum();
202
203 Ok(vec![(batch_size, total_words, total_chars)])
204 })?;
205 let duration = start.elapsed();
206
207 let total_words: usize = summary.iter().map(|(_, words_, _)| *words_).sum();
208 let total_chars: usize = summary.iter().map(|(_, _, chars)| *chars).sum();
209
210 println!("Processed large corpus in {duration:.2?}");
211 println!("Total words: {total_words}");
212 println!("Total chars: {total_chars}");
213 println!(
214 "Average processing speed: {:.2} documents/second",
215 largetexts.len() as f64 / duration.as_secs_f64()
216 );
217
218 Ok(())
219}Auto Trait Implementations§
impl<T> Freeze for ParallelTokenizer<T>where
T: Freeze,
impl<T> RefUnwindSafe for ParallelTokenizer<T>where
T: RefUnwindSafe,
impl<T> Send for ParallelTokenizer<T>
impl<T> Sync for ParallelTokenizer<T>
impl<T> Unpin for ParallelTokenizer<T>where
T: Unpin,
impl<T> UnwindSafe for ParallelTokenizer<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.