pub struct BayesianNeuralNetwork<F> {
pub architecture: Vec<usize>,
pub activations: Vec<ActivationType>,
pub weight_priors: Vec<DistributionType<F>>,
pub bias_priors: Vec<DistributionType<F>>,
pub weight_samples: Option<Vec<Array2<F>>>,
pub bias_samples: Option<Vec<Array1<F>>>,
}Expand description
Bayesian neural network implementation
Fields§
§architecture: Vec<usize>Network architecture
activations: Vec<ActivationType>Activation functions per layer
weight_priors: Vec<DistributionType<F>>Weight priors
bias_priors: Vec<DistributionType<F>>Bias priors
weight_samples: Option<Vec<Array2<F>>>Posterior samples of weights
bias_samples: Option<Vec<Array1<F>>>Posterior samples of biases
Implementations§
Source§impl<F> BayesianNeuralNetwork<F>
impl<F> BayesianNeuralNetwork<F>
Sourcepub fn new(
architecture: Vec<usize>,
activations: Vec<ActivationType>,
) -> StatsResult<Self>
pub fn new( architecture: Vec<usize>, activations: Vec<ActivationType>, ) -> StatsResult<Self>
Create new Bayesian neural network
Sourcepub fn forward(
&self,
x: &ArrayView2<'_, F>,
weights: &[Array2<F>],
biases: &[Array1<F>],
) -> StatsResult<Array2<F>>
pub fn forward( &self, x: &ArrayView2<'_, F>, weights: &[Array2<F>], biases: &[Array1<F>], ) -> StatsResult<Array2<F>>
Forward pass through the network
Sourcepub fn predict_with_uncertainty(
&self,
x: &ArrayView2<'_, F>,
_n_samples_: usize,
) -> StatsResult<(Array2<F>, Array2<F>)>
pub fn predict_with_uncertainty( &self, x: &ArrayView2<'_, F>, _n_samples_: usize, ) -> StatsResult<(Array2<F>, Array2<F>)>
Make predictions with uncertainty quantification
Trait Implementations§
Source§impl<F: Clone> Clone for BayesianNeuralNetwork<F>
impl<F: Clone> Clone for BayesianNeuralNetwork<F>
Source§fn clone(&self) -> BayesianNeuralNetwork<F>
fn clone(&self) -> BayesianNeuralNetwork<F>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl<F> Freeze for BayesianNeuralNetwork<F>
impl<F> !RefUnwindSafe for BayesianNeuralNetwork<F>
impl<F> Send for BayesianNeuralNetwork<F>where
F: Send,
impl<F> Sync for BayesianNeuralNetwork<F>where
F: Sync,
impl<F> Unpin for BayesianNeuralNetwork<F>where
F: Unpin,
impl<F> !UnwindSafe for BayesianNeuralNetwork<F>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.