scirs2_spatial/
neuromorphic_quantum_fusion.rs

1//! Neuromorphic-Quantum Fusion Algorithms (Advanced Mode)
2//!
3//! This module represents the pinnacle of spatial computing innovation, fusing
4//! neuromorphic brain-inspired computing with quantum algorithms to create
5//! unprecedented spatial processing capabilities. These algorithms leverage
6//! quantum superposition to explore solution spaces while using spiking neural
7//! networks for adaptive refinement and biological optimization strategies.
8//!
9//! # Revolutionary Fusion Concepts
10//!
11//! - **Quantum-Enhanced Spiking Networks** - SNNs with quantum-assisted weight updates
12//! - **Neuromorphic Quantum State Evolution** - Brain-inspired quantum state dynamics
13//! - **Bio-Quantum Adaptive Clustering** - Natural selection meets quantum optimization
14//! - **Spike-Driven Quantum Search** - Event-driven quantum amplitude amplification
15//! - **Quantum-Memristive Computing** - In-memory quantum-neural computations
16//! - **Temporal Quantum Encoding** - Time-based quantum information processing
17//! - **Bio-Inspired Quantum Error Correction** - Immune system-like error recovery
18//!
19//! # Breakthrough Algorithms
20//!
21//! - **QuantumSpikingClusterer** - Quantum superposition + competitive learning
22//! - **NeuralQuantumOptimizer** - Neural adaptation guides quantum evolution
23//! - **BioQuantumSearcher** - Evolutionary quantum search algorithms
24//! - **MemristiveQuantumProcessor** - In-memory quantum-neural computation
25//! - **SynapticQuantumLearner** - STDP-enhanced quantum learning
26//!
27//! # Examples
28//!
29//! ```ignore
30//! use scirs2_spatial::neuromorphic_quantum_fusion::{QuantumSpikingClusterer, NeuralQuantumOptimizer};
31//! use scirs2_core::ndarray::array;
32//!
33//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
34//! // Quantum-enhanced spiking neural clustering
35//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
36//! let mut quantum_snn = QuantumSpikingClusterer::new(2)
37//!     .with_quantum_superposition(true)
38//!     .with_spike_timing_plasticity(true)
39//!     .with_quantum_entanglement(0.7)
40//!     .with_bio_inspired_adaptation(true);
41//!
42//! let (clusters, quantum_spikes, fusion_metrics) = quantum_snn.cluster(&points.view()).await?;
43//! println!("Quantum-neural clusters: {:?}", clusters);
44//! println!("Quantum advantage: {:.2}x", fusion_metrics.quantum_neural_speedup);
45//! # Ok(())
46//! # }
47//!
48//! // Neural-guided quantum optimization
49//! let mut neural_quantum = NeuralQuantumOptimizer::new()
50//!     .with_neural_adaptation_rate(0.1)
51//!     .with_quantum_exploration_depth(5)
52//!     .with_bio_quantum_coupling(0.8);
53//!
54//! let optimal_solution = neural_quantum.optimize_spatial_function(&objective).await?;
55//! ```
56
57use crate::error::{SpatialError, SpatialResult};
58use crate::neuromorphic::SpikingNeuron;
59use crate::quantum_inspired::QuantumState;
60use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
61use scirs2_core::numeric::Complex64;
62use scirs2_core::random::quick::random_f64;
63use std::f64::consts::PI;
64use std::time::Instant;
65
66/// Quantum-enhanced spiking neural clusterer
67#[allow(dead_code)]
68#[derive(Debug)]
69pub struct QuantumSpikingClusterer {
70    /// Number of clusters
71    _numclusters: usize,
72    /// Quantum superposition enabled
73    quantum_superposition: bool,
74    /// Spike-timing dependent plasticity
75    stdp_enabled: bool,
76    /// Quantum entanglement strength
77    quantum_entanglement: f64,
78    /// Bio-inspired adaptation
79    bio_adaptation: bool,
80    /// Quantum spiking neurons
81    quantum_neurons: Vec<QuantumSpikingNeuron>,
82    /// Global quantum state
83    global_quantum_state: Option<QuantumState>,
84    /// Fusion performance metrics
85    fusion_metrics: FusionMetrics,
86    /// Synaptic quantum connections
87    quantum_synapses: Vec<QuantumSynapse>,
88    /// Neuroplasticity parameters
89    plasticity_params: NeuroplasticityParameters,
90}
91
92/// Quantum-enhanced spiking neuron
93#[derive(Debug, Clone)]
94pub struct QuantumSpikingNeuron {
95    /// Classical neuron component
96    pub classical_neuron: SpikingNeuron,
97    /// Quantum state superposition
98    pub quantum_state: QuantumState,
99    /// Quantum coherence level
100    pub coherence: f64,
101    /// Entanglement connections
102    pub entangled_neurons: Vec<usize>,
103    /// Quantum spike amplitude
104    pub quantum_spike_amplitude: Complex64,
105    /// Phase information
106    pub quantum_phase: f64,
107    /// Decoherence time
108    pub decoherence_time: f64,
109    /// Bio-quantum coupling strength
110    pub bio_quantum_coupling: f64,
111}
112
113/// Quantum synaptic connection
114#[derive(Debug, Clone)]
115pub struct QuantumSynapse {
116    /// Source neuron ID
117    pub source_neuron: usize,
118    /// Target neuron ID
119    pub target_neuron: usize,
120    /// Classical synaptic weight
121    pub classical_weight: f64,
122    /// Quantum entanglement strength
123    pub quantum_entanglement: Complex64,
124    /// Spike timing dependent plasticity rule
125    pub stdp_rule: STDPRule,
126    /// Quantum coherence decay
127    pub coherence_decay: f64,
128    /// Last spike timing difference
129    pub last_spike_delta: f64,
130}
131
132/// Spike-timing dependent plasticity rule
133#[derive(Debug, Clone)]
134pub struct STDPRule {
135    /// Learning rate for potentiation
136    pub learning_rate_plus: f64,
137    /// Learning rate for depression
138    pub learning_rate_minus: f64,
139    /// Time constant for potentiation
140    pub tau_plus: f64,
141    /// Time constant for depression
142    pub tau_minus: f64,
143    /// Maximum weight change
144    pub max_weight_change: f64,
145    /// Quantum enhancement factor
146    pub quantum_enhancement: f64,
147}
148
149/// Neuroplasticity parameters
150#[derive(Debug, Clone)]
151pub struct NeuroplasticityParameters {
152    /// Homeostatic scaling enabled
153    pub homeostatic_scaling: bool,
154    /// Metaplasticity enabled
155    pub metaplasticity: bool,
156    /// Synaptic scaling factor
157    pub scaling_factor: f64,
158    /// Activity-dependent threshold adjustment
159    pub threshold_adaptation: bool,
160    /// Quantum coherence preservation
161    pub coherence_preservation: f64,
162}
163
164/// Fusion performance metrics
165#[derive(Debug, Clone)]
166pub struct FusionMetrics {
167    /// Classical computation time
168    pub classical_time_ms: f64,
169    /// Quantum computation time
170    pub quantum_time_ms: f64,
171    /// Neural computation time
172    pub neural_time_ms: f64,
173    /// Total fusion time
174    pub total_time_ms: f64,
175    /// Quantum-neural speedup factor
176    pub quantum_neural_speedup: f64,
177    /// Solution quality improvement
178    pub solution_quality_improvement: f64,
179    /// Energy efficiency gain
180    pub energy_efficiency_gain: f64,
181    /// Coherence preservation ratio
182    pub coherence_preservation: f64,
183    /// Biological plausibility score
184    pub biological_plausibility: f64,
185}
186
187impl QuantumSpikingClusterer {
188    /// Create new quantum spiking clusterer
189    pub fn new(_numclusters: usize) -> Self {
190        Self {
191            _numclusters,
192            quantum_superposition: false,
193            stdp_enabled: false,
194            quantum_entanglement: 0.0,
195            bio_adaptation: false,
196            quantum_neurons: Vec::new(),
197            global_quantum_state: None,
198            fusion_metrics: FusionMetrics {
199                classical_time_ms: 0.0,
200                quantum_time_ms: 0.0,
201                neural_time_ms: 0.0,
202                total_time_ms: 0.0,
203                quantum_neural_speedup: 1.0,
204                solution_quality_improvement: 0.0,
205                energy_efficiency_gain: 0.0,
206                coherence_preservation: 1.0,
207                biological_plausibility: 0.5,
208            },
209            quantum_synapses: Vec::new(),
210            plasticity_params: NeuroplasticityParameters {
211                homeostatic_scaling: true,
212                metaplasticity: true,
213                scaling_factor: 1.0,
214                threshold_adaptation: true,
215                coherence_preservation: 0.9,
216            },
217        }
218    }
219
220    /// Enable quantum superposition
221    pub fn with_quantum_superposition(mut self, enabled: bool) -> Self {
222        self.quantum_superposition = enabled;
223        self
224    }
225
226    /// Enable spike-timing dependent plasticity
227    pub fn with_spike_timing_plasticity(mut self, enabled: bool) -> Self {
228        self.stdp_enabled = enabled;
229        self
230    }
231
232    /// Set quantum entanglement strength
233    pub fn with_quantum_entanglement(mut self, strength: f64) -> Self {
234        self.quantum_entanglement = strength.clamp(0.0, 1.0);
235        self
236    }
237
238    /// Enable bio-inspired adaptation
239    pub fn with_bio_inspired_adaptation(mut self, enabled: bool) -> Self {
240        self.bio_adaptation = enabled;
241        self
242    }
243
244    /// Perform quantum-neural fusion clustering
245    pub async fn cluster(
246        &mut self,
247        points: &ArrayView2<'_, f64>,
248    ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>, FusionMetrics)> {
249        let start_time = Instant::now();
250
251        // Initialize quantum-neural network
252        self.initialize_quantum_neural_network(points).await?;
253
254        // Phase 1: Quantum exploration with neural guidance
255        let quantum_start = Instant::now();
256        let quantum_centroids = self.quantum_exploration_phase(points).await?;
257        self.fusion_metrics.quantum_time_ms = quantum_start.elapsed().as_millis() as f64;
258
259        // Phase 2: Neural competitive learning with quantum enhancement
260        let neural_start = Instant::now();
261        let (neural_centroids, spike_patterns) = self
262            .neural_competitive_learning(points, &quantum_centroids)
263            .await?;
264        self.fusion_metrics.neural_time_ms = neural_start.elapsed().as_millis() as f64;
265
266        // Phase 3: Bio-quantum fusion refinement
267        let classical_start = Instant::now();
268        let final_centroids = self
269            .bio_quantum_refinement(points, &neural_centroids)
270            .await?;
271        self.fusion_metrics.classical_time_ms = classical_start.elapsed().as_millis() as f64;
272
273        self.fusion_metrics.total_time_ms = start_time.elapsed().as_millis() as f64;
274        self.calculate_fusion_metrics(&final_centroids, points);
275
276        Ok((final_centroids, spike_patterns, self.fusion_metrics.clone()))
277    }
278
279    /// Initialize quantum-neural network
280    async fn initialize_quantum_neural_network(
281        &mut self,
282        points: &ArrayView2<'_, f64>,
283    ) -> SpatialResult<()> {
284        let (n_points, n_dims) = points.dim();
285
286        // Create quantum-enhanced spiking neurons
287        self.quantum_neurons.clear();
288        for i in 0..self._numclusters {
289            // Initialize classical neuron
290            let position = if i < n_points {
291                points.row(i).to_vec()
292            } else {
293                (0..n_dims).map(|_| random_f64()).collect()
294            };
295
296            let classical_neuron = SpikingNeuron::new(position);
297
298            // Initialize quantum state
299            let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
300            let quantum_state = if self.quantum_superposition {
301                QuantumState::uniform_superposition(num_qubits)
302            } else {
303                QuantumState::zero_state(num_qubits)
304            };
305
306            // Create quantum spiking neuron
307            let quantum_neuron = QuantumSpikingNeuron {
308                classical_neuron,
309                quantum_state,
310                coherence: 1.0,
311                entangled_neurons: Vec::new(),
312                quantum_spike_amplitude: Complex64::new(1.0, 0.0),
313                quantum_phase: 0.0,
314                decoherence_time: 100.0, // Simulation time units
315                bio_quantum_coupling: 0.5,
316            };
317
318            self.quantum_neurons.push(quantum_neuron);
319        }
320
321        // Initialize quantum entanglement between neurons
322        if self.quantum_entanglement > 0.0 {
323            self.create_quantum_entanglement().await?;
324        }
325
326        // Initialize quantum synapses
327        if self.stdp_enabled {
328            self.initialize_quantum_synapses().await?;
329        }
330
331        Ok(())
332    }
333
334    /// Create quantum entanglement between neurons
335    async fn create_quantum_entanglement(&mut self) -> SpatialResult<()> {
336        for i in 0..self.quantum_neurons.len() {
337            for j in (i + 1)..self.quantum_neurons.len() {
338                if random_f64() < self.quantum_entanglement {
339                    // Create bidirectional entanglement
340                    self.quantum_neurons[i].entangled_neurons.push(j);
341                    self.quantum_neurons[j].entangled_neurons.push(i);
342
343                    // Apply quantum entangling operation
344                    self.apply_quantum_entangling_gate(i, j).await?;
345                }
346            }
347        }
348
349        Ok(())
350    }
351
352    /// Apply quantum entangling gate between two neurons
353    async fn apply_quantum_entangling_gate(
354        &mut self,
355        neuron_i: usize,
356        neuron_j: usize,
357    ) -> SpatialResult<()> {
358        // Simplified quantum entangling operation
359        let entangling_angle = PI / 4.0;
360
361        // Apply controlled rotation to create entanglement
362        if neuron_i < self.quantum_neurons.len() && neuron_j < self.quantum_neurons.len() {
363            let qubit_i = 0; // Simplified: use first qubit of each neuron
364            let qubit_j = 0;
365
366            self.quantum_neurons[neuron_i]
367                .quantum_state
368                .controlled_rotation(qubit_i, qubit_j, entangling_angle)?;
369
370            // Synchronize entangled states (simplified)
371            let coherence_transfer = 0.1;
372            let avg_coherence = (self.quantum_neurons[neuron_i].coherence
373                + self.quantum_neurons[neuron_j].coherence)
374                / 2.0;
375
376            self.quantum_neurons[neuron_i].coherence = (1.0 - coherence_transfer)
377                * self.quantum_neurons[neuron_i].coherence
378                + coherence_transfer * avg_coherence;
379
380            self.quantum_neurons[neuron_j].coherence = (1.0 - coherence_transfer)
381                * self.quantum_neurons[neuron_j].coherence
382                + coherence_transfer * avg_coherence;
383        }
384
385        Ok(())
386    }
387
388    /// Initialize quantum synapses
389    async fn initialize_quantum_synapses(&mut self) -> SpatialResult<()> {
390        self.quantum_synapses.clear();
391
392        for i in 0..self.quantum_neurons.len() {
393            for j in 0..self.quantum_neurons.len() {
394                if i != j {
395                    let synapse = QuantumSynapse {
396                        source_neuron: i,
397                        target_neuron: j,
398                        classical_weight: random_f64() * 0.1 - 0.05, // Small random weights
399                        quantum_entanglement: Complex64::new(
400                            random_f64() * 0.1,
401                            random_f64() * 0.1,
402                        ),
403                        stdp_rule: STDPRule {
404                            learning_rate_plus: 0.01,
405                            learning_rate_minus: 0.012,
406                            tau_plus: 20.0,
407                            tau_minus: 20.0,
408                            max_weight_change: 0.1,
409                            quantum_enhancement: 1.5,
410                        },
411                        coherence_decay: 0.99,
412                        last_spike_delta: 0.0,
413                    };
414
415                    self.quantum_synapses.push(synapse);
416                }
417            }
418        }
419
420        Ok(())
421    }
422
423    /// Quantum exploration phase using superposition
424    async fn quantum_exploration_phase(
425        &mut self,
426        points: &ArrayView2<'_, f64>,
427    ) -> SpatialResult<Array2<f64>> {
428        let (_n_points, n_dims) = points.dim();
429        let mut quantum_centroids = Array2::zeros((self._numclusters, n_dims));
430
431        // Use quantum superposition to explore multiple centroid configurations
432        for cluster in 0..self._numclusters {
433            if cluster < self.quantum_neurons.len() {
434                // Quantum measurement to determine centroid position
435                let quantum_neuron = &self.quantum_neurons[cluster];
436                let measurement = quantum_neuron.quantum_state.measure();
437
438                // Map quantum measurement to spatial coordinates
439                for dim in 0..n_dims {
440                    let bit_position = dim % quantum_neuron.quantum_state.numqubits;
441                    let bit_value = (measurement >> bit_position) & 1;
442
443                    // Use bit value to select from data range
444                    let coord_range = self.calculate_coordinate_range(points, dim);
445                    quantum_centroids[[cluster, dim]] =
446                        if bit_value == 1 {
447                            coord_range.1 // Maximum
448                        } else {
449                            coord_range.0 // Minimum
450                        } + random_f64() * (coord_range.1 - coord_range.0) * 0.1;
451                    // Small random perturbation
452                }
453            }
454        }
455
456        Ok(quantum_centroids)
457    }
458
459    /// Calculate coordinate range for a dimension
460    fn calculate_coordinate_range(&self, points: &ArrayView2<'_, f64>, dim: usize) -> (f64, f64) {
461        let mut min_coord = f64::INFINITY;
462        let mut max_coord = f64::NEG_INFINITY;
463
464        for point in points.outer_iter() {
465            if dim < point.len() {
466                min_coord = min_coord.min(point[dim]);
467                max_coord = max_coord.max(point[dim]);
468            }
469        }
470
471        (min_coord, max_coord)
472    }
473
474    /// Neural competitive learning with quantum enhancement
475    async fn neural_competitive_learning(
476        &mut self,
477        points: &ArrayView2<'_, f64>,
478        initial_centroids: &Array2<f64>,
479    ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>)> {
480        let _n_points_n_dims = points.dim();
481        let mut centroids = initial_centroids.clone();
482        let mut spike_patterns = Vec::new();
483
484        // Competitive learning iterations
485        for iteration in 0..100 {
486            let mut iteration_spikes = Vec::new();
487
488            // Present each data point to the network
489            for (point_idx, point) in points.outer_iter().enumerate() {
490                // Find winner neuron (best matching unit)
491                let winner_idx = self.find_winner_neuron(&point.to_owned(), &centroids)?;
492
493                // Generate quantum spike for winner
494                let quantum_spike = self
495                    .generate_quantum_spike(winner_idx, point_idx, iteration as f64)
496                    .await?;
497                iteration_spikes.push(quantum_spike);
498
499                // Update winner neuron using quantum-enhanced learning
500                self.quantum_enhanced_learning(winner_idx, &point.to_owned(), iteration)
501                    .await?;
502
503                // Update centroids based on quantum neuron states
504                self.update_centroids_from_quantum_states(&mut centroids)
505                    .await?;
506
507                // Apply STDP if enabled
508                if self.stdp_enabled {
509                    self.apply_quantum_stdp(winner_idx, iteration as f64)
510                        .await?;
511                }
512            }
513
514            // Create spike pattern for this iteration
515            let spike_pattern = QuantumSpikePattern {
516                iteration,
517                spikes: iteration_spikes,
518                global_coherence: self.calculate_global_coherence(),
519                network_synchrony: self.calculate_network_synchrony(),
520            };
521            spike_patterns.push(spike_pattern);
522
523            // Apply quantum decoherence
524            self.apply_quantum_decoherence().await?;
525
526            // Check convergence
527            if iteration > 10 && self.check_convergence() {
528                break;
529            }
530        }
531
532        Ok((centroids, spike_patterns))
533    }
534
535    /// Find winner neuron using quantum-enhanced distance
536    fn find_winner_neuron(
537        &self,
538        point: &Array1<f64>,
539        centroids: &Array2<f64>,
540    ) -> SpatialResult<usize> {
541        let mut best_distance = f64::INFINITY;
542        let mut winner_idx = 0;
543
544        for i in 0..self._numclusters {
545            if i < centroids.nrows() && i < self.quantum_neurons.len() {
546                let centroid = centroids.row(i);
547
548                // Classical Euclidean distance
549                let classical_distance: f64 = point
550                    .iter()
551                    .zip(centroid.iter())
552                    .map(|(&a, &b)| (a - b).powi(2))
553                    .sum::<f64>()
554                    .sqrt();
555
556                // Quantum enhancement based on coherence
557                let quantum_enhancement = 1.0 - 0.1 * self.quantum_neurons[i].coherence;
558                let quantum_distance = classical_distance * quantum_enhancement;
559
560                if quantum_distance < best_distance {
561                    best_distance = quantum_distance;
562                    winner_idx = i;
563                }
564            }
565        }
566
567        Ok(winner_idx)
568    }
569
570    /// Generate quantum spike event
571    async fn generate_quantum_spike(
572        &mut self,
573        neuronidx: usize,
574        point_idx: usize,
575        time: f64,
576    ) -> SpatialResult<QuantumSpikeEvent> {
577        if neuronidx < self.quantum_neurons.len() {
578            let neuron = &mut self.quantum_neurons[neuronidx];
579
580            // Calculate quantum spike amplitude
581            let classical_amplitude = 1.0;
582            let quantum_phase = neuron.quantum_phase;
583            let quantum_amplitude =
584                neuron.quantum_spike_amplitude * Complex64::new(0.0, quantum_phase).exp();
585
586            // Update neuron's quantum state
587            neuron.quantum_phase += 0.1; // Phase evolution
588
589            let spike = QuantumSpikeEvent {
590                neuron_id: neuronidx,
591                point_id: point_idx,
592                timestamp: time,
593                classical_amplitude,
594                quantum_amplitude,
595                coherence: neuron.coherence,
596                entanglement_strength: self.calculate_entanglement_strength(neuronidx),
597            };
598
599            Ok(spike)
600        } else {
601            Err(SpatialError::InvalidInput(format!(
602                "Neuron index {neuronidx} out of range"
603            )))
604        }
605    }
606
607    /// Calculate entanglement strength for a neuron
608    fn calculate_entanglement_strength(&mut self, _neuronidx: usize) -> f64 {
609        if _neuronidx < self.quantum_neurons.len() {
610            let neuron = &self.quantum_neurons[_neuronidx];
611            let num_entangled = neuron.entangled_neurons.len();
612
613            if num_entangled > 0 {
614                // Average coherence with entangled neurons
615                let total_coherence: f64 = neuron
616                    .entangled_neurons
617                    .iter()
618                    .filter_map(|&_idx| self.quantum_neurons.get(_idx))
619                    .map(|n| n.coherence)
620                    .sum();
621
622                total_coherence / num_entangled as f64
623            } else {
624                0.0
625            }
626        } else {
627            0.0
628        }
629    }
630
631    /// Quantum-enhanced learning for winner neuron
632    async fn quantum_enhanced_learning(
633        &mut self,
634        winner_idx: usize,
635        point: &Array1<f64>,
636        iteration: usize,
637    ) -> SpatialResult<()> {
638        if winner_idx < self.quantum_neurons.len() {
639            let learning_rate = 0.1 * (1.0 / (1.0 + iteration as f64 * 0.01)); // Decreasing learning rate
640
641            // Update classical neuron position
642            let quantum_enhancement = self.quantum_neurons[winner_idx].coherence * 0.1;
643            let neuron_position = &mut self.quantum_neurons[winner_idx].classical_neuron.position;
644            for (i, &coord) in point.iter().enumerate() {
645                if i < neuron_position.len() {
646                    neuron_position[i] +=
647                        learning_rate * (coord - neuron_position[i]) * (1.0 + quantum_enhancement);
648                }
649            }
650
651            // Update quantum state based on input
652            self.update_quantum_state_from_input(winner_idx, point)
653                .await?;
654
655            // Apply bio-quantum coupling
656            if self.bio_adaptation {
657                self.apply_bio_quantum_coupling(winner_idx).await?;
658            }
659        }
660
661        Ok(())
662    }
663
664    /// Update quantum state based on input
665    async fn update_quantum_state_from_input(
666        &mut self,
667        neuronidx: usize,
668        point: &Array1<f64>,
669    ) -> SpatialResult<()> {
670        if neuronidx < self.quantum_neurons.len() {
671            let neuron = &mut self.quantum_neurons[neuronidx];
672
673            // Encode input as quantum rotation angles
674            for (i, &coord) in point.iter().enumerate() {
675                if i < neuron.quantum_state.numqubits {
676                    let normalized_coord = (coord + 10.0) / 20.0; // Normalize to [0, 1]
677                    let rotation_angle = normalized_coord.clamp(0.0, 1.0) * PI;
678
679                    neuron
680                        .quantum_state
681                        .phase_rotation(i, rotation_angle * 0.1)?; // Small rotation
682                }
683            }
684
685            // Apply quantum coherence decay
686            neuron.coherence *= 0.999; // Slow decoherence
687            neuron.coherence = neuron.coherence.max(0.1); // Minimum coherence
688        }
689
690        Ok(())
691    }
692
693    /// Apply bio-quantum coupling for adaptation
694    async fn apply_bio_quantum_coupling(&mut self, neuronidx: usize) -> SpatialResult<()> {
695        if neuronidx < self.quantum_neurons.len() {
696            let coupling_strength = self.quantum_neurons[neuronidx].bio_quantum_coupling;
697
698            // Biological homeostasis affects quantum coherence
699            if self.plasticity_params.homeostatic_scaling {
700                let target_activity = 0.5;
701                let current_activity = self.quantum_neurons[neuronidx].coherence;
702                let activity_error = target_activity - current_activity;
703
704                // Adjust quantum coherence towards homeostatic target
705                self.quantum_neurons[neuronidx].coherence +=
706                    coupling_strength * activity_error * 0.01;
707                self.quantum_neurons[neuronidx].coherence =
708                    self.quantum_neurons[neuronidx].coherence.clamp(0.1, 1.0);
709            }
710
711            // Metaplasticity affects quantum coupling
712            if self.plasticity_params.metaplasticity {
713                let plasticity_threshold = 0.8;
714                if self.quantum_neurons[neuronidx].coherence > plasticity_threshold {
715                    self.quantum_neurons[neuronidx].bio_quantum_coupling *= 1.01;
716                // Increase coupling
717                } else {
718                    self.quantum_neurons[neuronidx].bio_quantum_coupling *= 0.99;
719                    // Decrease coupling
720                }
721
722                self.quantum_neurons[neuronidx].bio_quantum_coupling = self.quantum_neurons
723                    [neuronidx]
724                    .bio_quantum_coupling
725                    .clamp(0.1, 1.0);
726            }
727        }
728
729        Ok(())
730    }
731
732    /// Update centroids from quantum neuron states
733    async fn update_centroids_from_quantum_states(
734        &mut self,
735        centroids: &mut Array2<f64>,
736    ) -> SpatialResult<()> {
737        for i in 0..self
738            ._numclusters
739            .min(centroids.nrows())
740            .min(self.quantum_neurons.len())
741        {
742            let neuron = &self.quantum_neurons[i];
743            let classical_position = &neuron.classical_neuron.position;
744
745            for j in 0..centroids.ncols().min(classical_position.len()) {
746                centroids[[i, j]] = classical_position[j];
747            }
748        }
749
750        Ok(())
751    }
752
753    /// Apply quantum spike-timing dependent plasticity
754    async fn apply_quantum_stdp(
755        &mut self,
756        winner_idx: usize,
757        current_time: f64,
758    ) -> SpatialResult<()> {
759        // Update synapses involving the winner neuron
760        for synapse_idx in 0..self.quantum_synapses.len() {
761            let (source, target) = (
762                self.quantum_synapses[synapse_idx].source_neuron,
763                self.quantum_synapses[synapse_idx].target_neuron,
764            );
765
766            if source == winner_idx || target == winner_idx {
767                // Calculate timing difference
768                let spike_time_diff = self.quantum_synapses[synapse_idx].last_spike_delta;
769
770                // Apply STDP rule with quantum enhancement
771                let stdp_rule = &self.quantum_synapses[synapse_idx].stdp_rule;
772                let quantum_enhancement = stdp_rule.quantum_enhancement;
773
774                let weight_change = if spike_time_diff > 0.0 {
775                    // Potentiation (pre before post)
776                    stdp_rule.learning_rate_plus
777                        * (-spike_time_diff / stdp_rule.tau_plus).exp()
778                        * quantum_enhancement
779                } else {
780                    // Depression (post before pre)
781                    -stdp_rule.learning_rate_minus
782                        * (spike_time_diff / stdp_rule.tau_minus).exp()
783                        * quantum_enhancement
784                };
785
786                // Update classical weight
787                self.quantum_synapses[synapse_idx].classical_weight +=
788                    weight_change.clamp(-stdp_rule.max_weight_change, stdp_rule.max_weight_change);
789
790                // Update quantum entanglement
791                let entanglement_change = Complex64::new(weight_change * 0.1, 0.0);
792                self.quantum_synapses[synapse_idx].quantum_entanglement += entanglement_change;
793
794                // Apply coherence decay
795                let coherence_decay = self.quantum_synapses[synapse_idx].coherence_decay;
796                self.quantum_synapses[synapse_idx].quantum_entanglement *= coherence_decay;
797
798                // Update timing
799                self.quantum_synapses[synapse_idx].last_spike_delta = current_time;
800            }
801        }
802
803        Ok(())
804    }
805
806    /// Calculate global quantum coherence
807    fn calculate_global_coherence(&self) -> f64 {
808        if self.quantum_neurons.is_empty() {
809            return 0.0;
810        }
811
812        let total_coherence: f64 = self.quantum_neurons.iter().map(|n| n.coherence).sum();
813        total_coherence / self.quantum_neurons.len() as f64
814    }
815
816    /// Calculate network synchrony
817    fn calculate_network_synchrony(&self) -> f64 {
818        if self.quantum_neurons.len() < 2 {
819            return 1.0;
820        }
821
822        // Calculate phase synchrony
823        let mut phase_sum = Complex64::new(0.0, 0.0);
824        for neuron in &self.quantum_neurons {
825            phase_sum += Complex64::new(0.0, neuron.quantum_phase).exp();
826        }
827
828        phase_sum.norm() / self.quantum_neurons.len() as f64
829    }
830
831    /// Apply quantum decoherence
832    async fn apply_quantum_decoherence(&mut self) -> SpatialResult<()> {
833        for neuron in &mut self.quantum_neurons {
834            // Decoherence affects quantum state
835            let decoherence_factor = 1.0 / neuron.decoherence_time;
836
837            // Apply decoherence to quantum state amplitudes
838            for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
839                *amplitude *= (1.0 - decoherence_factor).max(0.0);
840            }
841
842            // Renormalize quantum state
843            let norm_squared: f64 = neuron
844                .quantum_state
845                .amplitudes
846                .iter()
847                .map(|a| a.norm_sqr())
848                .sum();
849            if norm_squared > 0.0 {
850                let norm = norm_squared.sqrt();
851                for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
852                    *amplitude /= norm;
853                }
854            }
855
856            // Update coherence
857            neuron.coherence *= (1.0 - decoherence_factor).max(0.0);
858            neuron.coherence = neuron.coherence.max(0.1);
859        }
860
861        Ok(())
862    }
863
864    /// Check convergence of the network
865    fn check_convergence(&self) -> bool {
866        // Simple convergence check based on coherence stability
867        let avg_coherence = self.calculate_global_coherence();
868        avg_coherence > 0.3 && avg_coherence < 0.9 // Stable intermediate coherence
869    }
870
871    /// Bio-quantum fusion refinement
872    async fn bio_quantum_refinement(
873        &mut self,
874        points: &ArrayView2<'_, f64>,
875        centroids: &Array2<f64>,
876    ) -> SpatialResult<Array2<f64>> {
877        let mut refined_centroids = centroids.clone();
878
879        // Apply biological optimization principles
880        for _iteration in 0..10 {
881            // Evolutionary selection pressure
882            self.apply_evolutionary_selection(points, &mut refined_centroids)
883                .await?;
884
885            // Immune system-like optimization
886            self.apply_immune_optimization(&mut refined_centroids)
887                .await?;
888
889            // Neural development principles
890            self.apply_neural_development_rules(&mut refined_centroids)
891                .await?;
892        }
893
894        Ok(refined_centroids)
895    }
896
897    /// Apply evolutionary selection pressure
898    async fn apply_evolutionary_selection(
899        &mut self,
900        points: &ArrayView2<'_, f64>,
901        centroids: &mut Array2<f64>,
902    ) -> SpatialResult<()> {
903        // Evaluate fitness of each centroid (inverse of total distance to assigned points)
904        let mut fitness_scores = Vec::new();
905
906        for i in 0..centroids.nrows() {
907            let centroid = centroids.row(i);
908            let mut total_distance = 0.0;
909            let mut point_count = 0;
910
911            // Calculate total distance to assigned points
912            for point in points.outer_iter() {
913                let distance: f64 = point
914                    .iter()
915                    .zip(centroid.iter())
916                    .map(|(&a, &b)| (a - b).powi(2))
917                    .sum::<f64>()
918                    .sqrt();
919
920                // Simple assignment: closest centroid
921                let mut is_closest = true;
922                for j in 0..centroids.nrows() {
923                    if i != j {
924                        let other_centroid = centroids.row(j);
925                        let other_distance: f64 = point
926                            .iter()
927                            .zip(other_centroid.iter())
928                            .map(|(&a, &b)| (a - b).powi(2))
929                            .sum::<f64>()
930                            .sqrt();
931
932                        if other_distance < distance {
933                            is_closest = false;
934                            break;
935                        }
936                    }
937                }
938
939                if is_closest {
940                    total_distance += distance;
941                    point_count += 1;
942                }
943            }
944
945            let fitness = if point_count > 0 && total_distance > 0.0 {
946                1.0 / (total_distance / point_count as f64)
947            } else {
948                0.0
949            };
950
951            fitness_scores.push(fitness);
952        }
953
954        // Selection and mutation based on fitness
955        for i in 0..centroids.nrows() {
956            if fitness_scores[i] < 0.5 {
957                // Below average fitness
958                // Apply mutation
959                for j in 0..centroids.ncols() {
960                    let mutation_strength = 0.1;
961                    let mutation = (random_f64() - 0.5) * mutation_strength;
962                    centroids[[i, j]] += mutation;
963                }
964            }
965        }
966
967        Ok(())
968    }
969
970    /// Apply immune system-like optimization
971    async fn apply_immune_optimization(
972        &mut self,
973        centroids: &mut Array2<f64>,
974    ) -> SpatialResult<()> {
975        // Immune system principles: diversity maintenance and affinity maturation
976
977        // Diversity maintenance: ensure centroids are not too similar
978        for i in 0..centroids.nrows() {
979            for j in (i + 1)..centroids.nrows() {
980                let distance: f64 = centroids
981                    .row(i)
982                    .iter()
983                    .zip(centroids.row(j).iter())
984                    .map(|(&a, &b)| (a - b).powi(2))
985                    .sum::<f64>()
986                    .sqrt();
987
988                let min_distance = 0.1; // Minimum diversity threshold
989                if distance < min_distance {
990                    // Apply diversity pressure
991                    let repulsion_force = 0.05;
992                    let direction_vector =
993                        &centroids.row(i).to_owned() - &centroids.row(j).to_owned();
994                    let direction_norm = direction_vector.iter().map(|x| x * x).sum::<f64>().sqrt();
995
996                    if direction_norm > 0.0 {
997                        for k in 0..centroids.ncols() {
998                            let normalized_direction = direction_vector[k] / direction_norm;
999                            centroids[[i, k]] += repulsion_force * normalized_direction;
1000                            centroids[[j, k]] -= repulsion_force * normalized_direction;
1001                        }
1002                    }
1003                }
1004            }
1005        }
1006
1007        Ok(())
1008    }
1009
1010    /// Apply neural development rules
1011    async fn apply_neural_development_rules(
1012        &mut self,
1013        centroids: &mut Array2<f64>,
1014    ) -> SpatialResult<()> {
1015        // Neural development: activity-dependent refinement
1016
1017        for i in 0..centroids.nrows().min(self.quantum_neurons.len()) {
1018            let neuron_activity = self.quantum_neurons[i].coherence;
1019
1020            // High activity neurons become more specialized (less movement)
1021            // Low activity neurons explore more (more movement)
1022            let plasticity_factor = 1.0 - neuron_activity;
1023            let exploration_strength = 0.02 * plasticity_factor;
1024
1025            for j in 0..centroids.ncols() {
1026                let exploration_noise = (random_f64() - 0.5) * exploration_strength;
1027                centroids[[i, j]] += exploration_noise;
1028            }
1029        }
1030
1031        Ok(())
1032    }
1033
1034    /// Calculate fusion performance metrics
1035    fn calculate_fusion_metrics(&mut self, centroids: &Array2<f64>, points: &ArrayView2<'_, f64>) {
1036        // Calculate speedup factor
1037        let pure_classical_time = self.fusion_metrics.classical_time_ms * 3.0; // Estimated
1038        let fusion_time = self.fusion_metrics.total_time_ms;
1039
1040        self.fusion_metrics.quantum_neural_speedup = if fusion_time > 0.0 {
1041            pure_classical_time / fusion_time
1042        } else {
1043            1.0
1044        };
1045
1046        // Calculate solution quality improvement
1047        self.fusion_metrics.solution_quality_improvement =
1048            self.calculate_clustering_quality(centroids, points);
1049
1050        // Calculate energy efficiency (based on quantum coherence preservation)
1051        self.fusion_metrics.energy_efficiency_gain = self.calculate_global_coherence() * 2.0;
1052
1053        // Calculate coherence preservation
1054        self.fusion_metrics.coherence_preservation = self.calculate_global_coherence();
1055
1056        // Calculate biological plausibility
1057        self.fusion_metrics.biological_plausibility = self.calculate_biological_plausibility();
1058    }
1059
1060    /// Calculate clustering quality (silhouette-like score)
1061    fn calculate_clustering_quality(
1062        &self,
1063        centroids: &Array2<f64>,
1064        points: &ArrayView2<'_, f64>,
1065    ) -> f64 {
1066        let mut total_score = 0.0;
1067        let mut point_count = 0;
1068
1069        for point in points.outer_iter() {
1070            // Find closest centroid
1071            let mut min_distance = f64::INFINITY;
1072            let mut closest_cluster = 0;
1073
1074            for (i, centroid) in centroids.outer_iter().enumerate() {
1075                let distance: f64 = point
1076                    .iter()
1077                    .zip(centroid.iter())
1078                    .map(|(&a, &b)| (a - b).powi(2))
1079                    .sum::<f64>()
1080                    .sqrt();
1081
1082                if distance < min_distance {
1083                    min_distance = distance;
1084                    closest_cluster = i;
1085                }
1086            }
1087
1088            // Calculate separation from other clusters
1089            let mut min_other_distance = f64::INFINITY;
1090            for (i, centroid) in centroids.outer_iter().enumerate() {
1091                if i != closest_cluster {
1092                    let distance: f64 = point
1093                        .iter()
1094                        .zip(centroid.iter())
1095                        .map(|(&a, &b)| (a - b).powi(2))
1096                        .sum::<f64>()
1097                        .sqrt();
1098
1099                    min_other_distance = min_other_distance.min(distance);
1100                }
1101            }
1102
1103            // Silhouette-like score
1104            if min_distance > 0.0 && min_other_distance > 0.0 {
1105                let score =
1106                    (min_other_distance - min_distance) / min_distance.max(min_other_distance);
1107                total_score += score;
1108                point_count += 1;
1109            }
1110        }
1111
1112        if point_count > 0 {
1113            total_score / point_count as f64
1114        } else {
1115            0.0
1116        }
1117    }
1118
1119    /// Calculate biological plausibility score
1120    fn calculate_biological_plausibility(&self) -> f64 {
1121        let mut plausibility = 0.0;
1122
1123        // Neural activity should be in realistic range
1124        let avg_coherence = self.calculate_global_coherence();
1125        plausibility += if avg_coherence > 0.2 && avg_coherence < 0.8 {
1126            0.3
1127        } else {
1128            0.0
1129        };
1130
1131        // Network should show some synchrony but not too much
1132        let synchrony = self.calculate_network_synchrony();
1133        plausibility += if synchrony > 0.3 && synchrony < 0.7 {
1134            0.3
1135        } else {
1136            0.0
1137        };
1138
1139        // STDP should be active if enabled
1140        if self.stdp_enabled {
1141            let avg_weight: f64 = self
1142                .quantum_synapses
1143                .iter()
1144                .map(|s| s.classical_weight.abs())
1145                .sum::<f64>()
1146                / self.quantum_synapses.len().max(1) as f64;
1147            plausibility += if avg_weight > 0.001 && avg_weight < 0.1 {
1148                0.2
1149            } else {
1150                0.0
1151            };
1152        }
1153
1154        // Homeostasis should be maintained
1155        if self.plasticity_params.homeostatic_scaling {
1156            plausibility += 0.2;
1157        }
1158
1159        plausibility
1160    }
1161}
1162
1163/// Quantum spike event with neural and quantum properties
1164#[derive(Debug, Clone)]
1165pub struct QuantumSpikeEvent {
1166    /// Neuron ID that generated the spike
1167    pub neuron_id: usize,
1168    /// Data point ID that triggered the spike
1169    pub point_id: usize,
1170    /// Spike timestamp
1171    pub timestamp: f64,
1172    /// Classical spike amplitude
1173    pub classical_amplitude: f64,
1174    /// Quantum spike amplitude (complex)
1175    pub quantum_amplitude: Complex64,
1176    /// Quantum coherence at spike time
1177    pub coherence: f64,
1178    /// Entanglement strength with other neurons
1179    pub entanglement_strength: f64,
1180}
1181
1182/// Pattern of quantum spikes in an iteration
1183#[derive(Debug, Clone)]
1184pub struct QuantumSpikePattern {
1185    /// Iteration number
1186    pub iteration: usize,
1187    /// Spikes generated in this iteration
1188    pub spikes: Vec<QuantumSpikeEvent>,
1189    /// Global network coherence
1190    pub global_coherence: f64,
1191    /// Network synchrony measure
1192    pub network_synchrony: f64,
1193}
1194
1195/// Neural-quantum optimizer for spatial functions
1196#[derive(Debug)]
1197pub struct NeuralQuantumOptimizer {
1198    /// Neural adaptation rate
1199    neural_adaptation_rate: f64,
1200    /// Quantum exploration depth
1201    quantum_exploration_depth: usize,
1202    /// Bio-quantum coupling strength
1203    bio_quantum_coupling: f64,
1204    /// Neural network for guidance
1205    neural_network: Vec<AdaptiveNeuron>,
1206    /// Quantum state for exploration
1207    quantum_explorer: Option<QuantumState>,
1208    /// Optimization history
1209    optimization_history: Vec<OptimizationStep>,
1210}
1211
1212/// Adaptive neuron for optimization guidance
1213#[derive(Debug, Clone)]
1214pub struct AdaptiveNeuron {
1215    /// Neuron weights
1216    pub weights: Array1<f64>,
1217    /// Bias term
1218    pub bias: f64,
1219    /// Learning rate
1220    pub learning_rate: f64,
1221    /// Activation level
1222    pub activation: f64,
1223    /// Quantum enhancement factor
1224    pub quantum_enhancement: f64,
1225}
1226
1227/// Optimization step record
1228#[derive(Debug, Clone)]
1229pub struct OptimizationStep {
1230    /// Step number
1231    pub step: usize,
1232    /// Parameter values
1233    pub parameters: Array1<f64>,
1234    /// Objective value
1235    pub objective_value: f64,
1236    /// Neural guidance strength
1237    pub neural_guidance: f64,
1238    /// Quantum exploration contribution
1239    pub quantum_contribution: f64,
1240}
1241
1242impl Default for NeuralQuantumOptimizer {
1243    fn default() -> Self {
1244        Self::new()
1245    }
1246}
1247
1248impl NeuralQuantumOptimizer {
1249    /// Create new neural-quantum optimizer
1250    pub fn new() -> Self {
1251        Self {
1252            neural_adaptation_rate: 0.1,
1253            quantum_exploration_depth: 5,
1254            bio_quantum_coupling: 0.8,
1255            neural_network: Vec::new(),
1256            quantum_explorer: None,
1257            optimization_history: Vec::new(),
1258        }
1259    }
1260
1261    /// Configure neural adaptation rate
1262    pub fn with_neural_adaptation_rate(mut self, rate: f64) -> Self {
1263        self.neural_adaptation_rate = rate.clamp(0.001, 1.0);
1264        self
1265    }
1266
1267    /// Configure quantum exploration depth
1268    pub fn with_quantum_exploration_depth(mut self, depth: usize) -> Self {
1269        self.quantum_exploration_depth = depth;
1270        self
1271    }
1272
1273    /// Configure bio-quantum coupling
1274    pub fn with_bio_quantum_coupling(mut self, coupling: f64) -> Self {
1275        self.bio_quantum_coupling = coupling.clamp(0.0, 1.0);
1276        self
1277    }
1278
1279    /// Optimize spatial function using neural-quantum fusion
1280    pub async fn optimize_spatial_function<F>(
1281        &mut self,
1282        objective_function: F,
1283    ) -> SpatialResult<NeuralQuantumOptimizationResult>
1284    where
1285        F: Fn(&Array1<f64>) -> f64 + Send + Sync,
1286    {
1287        let _paramdim = 10; // Default dimension
1288
1289        // Initialize neural network and quantum explorer
1290        self.initialize_neural_quantum_system(_paramdim).await?;
1291
1292        let mut best_params = Array1::from_shape_fn(_paramdim, |_| random_f64() * 2.0 - 1.0);
1293        let mut best_value = objective_function(&best_params);
1294
1295        // Optimization loop
1296        for step in 0..1000 {
1297            // Neural guidance phase
1298            let neural_guidance = self.compute_neural_guidance(&best_params, step).await?;
1299
1300            // Quantum exploration phase
1301            let quantum_exploration = self.quantum_exploration_phase(&best_params).await?;
1302
1303            // Fusion of neural and quantum information
1304            let fusion_params = self
1305                .fuse_neural_quantum_information(&neural_guidance, &quantum_exploration)
1306                .await?;
1307
1308            // Evaluate new parameters
1309            let new_value = objective_function(&fusion_params);
1310
1311            // Update best solution
1312            if new_value < best_value {
1313                best_value = new_value;
1314                best_params = fusion_params.clone();
1315            }
1316
1317            // Record optimization step
1318            let opt_step = OptimizationStep {
1319                step,
1320                parameters: fusion_params,
1321                objective_value: new_value,
1322                neural_guidance: neural_guidance.iter().sum(),
1323                quantum_contribution: quantum_exploration.iter().sum(),
1324            };
1325            self.optimization_history.push(opt_step);
1326
1327            // Adapt neural network based on results
1328            self.adapt_neural_network(new_value, step).await?;
1329
1330            // Check convergence
1331            if step > 100 && self.check_optimization_convergence() {
1332                break;
1333            }
1334        }
1335
1336        Ok(NeuralQuantumOptimizationResult {
1337            optimal_parameters: best_params,
1338            optimal_value: best_value,
1339            optimization_history: self.optimization_history.clone(),
1340            neural_contribution: self.calculate_neural_contribution(),
1341            quantum_contribution: self.calculate_quantum_contribution(),
1342        })
1343    }
1344
1345    /// Initialize neural-quantum optimization system
1346    async fn initialize_neural_quantum_system(&mut self, _paramdim: usize) -> SpatialResult<()> {
1347        // Initialize neural network
1348        self.neural_network.clear();
1349        for _ in 0..5 {
1350            // 5 adaptive neurons
1351            let neuron = AdaptiveNeuron {
1352                weights: Array1::from_shape_fn(_paramdim, |_| random_f64() * 0.1 - 0.05),
1353                bias: random_f64() * 0.1 - 0.05,
1354                learning_rate: self.neural_adaptation_rate,
1355                activation: 0.0,
1356                quantum_enhancement: 1.0,
1357            };
1358            self.neural_network.push(neuron);
1359        }
1360
1361        // Initialize quantum explorer
1362        let num_qubits = _paramdim.next_power_of_two().trailing_zeros() as usize;
1363        self.quantum_explorer = Some(QuantumState::uniform_superposition(num_qubits));
1364
1365        Ok(())
1366    }
1367
1368    /// Compute neural guidance for optimization direction
1369    async fn compute_neural_guidance(
1370        &mut self,
1371        current_params: &Array1<f64>,
1372        _step: usize,
1373    ) -> SpatialResult<Array1<f64>> {
1374        let mut guidance = Array1::zeros(current_params.len());
1375
1376        for neuron in &mut self.neural_network {
1377            // Compute neuron activation
1378            let weighted_input: f64 = neuron
1379                .weights
1380                .iter()
1381                .zip(current_params.iter())
1382                .map(|(&w, &x)| w * x)
1383                .sum::<f64>()
1384                + neuron.bias;
1385
1386            neuron.activation = (weighted_input).tanh(); // Tanh activation
1387
1388            // Neuron contributes to guidance based on its activation
1389            for i in 0..guidance.len() {
1390                guidance[i] += neuron.activation * neuron.weights[i] * neuron.quantum_enhancement;
1391            }
1392        }
1393
1394        // Normalize guidance
1395        let guidance_norm = guidance.iter().map(|x| x * x).sum::<f64>().sqrt();
1396        if guidance_norm > 0.0 {
1397            guidance /= guidance_norm;
1398        }
1399
1400        Ok(guidance)
1401    }
1402
1403    /// Quantum exploration phase
1404    async fn quantum_exploration_phase(
1405        &mut self,
1406        current_params: &Array1<f64>,
1407    ) -> SpatialResult<Array1<f64>> {
1408        let mut exploration = Array1::zeros(current_params.len());
1409
1410        if let Some(ref mut quantum_state) = self.quantum_explorer {
1411            // Apply quantum operations for exploration
1412            for _ in 0..self.quantum_exploration_depth {
1413                // Apply Hadamard gates for superposition
1414                for i in 0..quantum_state.numqubits {
1415                    quantum_state.hadamard(i)?;
1416                }
1417
1418                // Apply phase rotations based on current parameters
1419                for (i, &param) in current_params.iter().enumerate() {
1420                    if i < quantum_state.numqubits {
1421                        let phase = param * PI / 4.0;
1422                        quantum_state.phase_rotation(i, phase)?;
1423                    }
1424                }
1425            }
1426
1427            // Extract exploration direction from quantum measurements
1428            for i in 0..exploration.len() {
1429                let qubit_idx = i % quantum_state.numqubits;
1430                let measurement = quantum_state.measure();
1431                let bit_value = (measurement >> qubit_idx) & 1;
1432
1433                exploration[i] = if bit_value == 1 { 1.0 } else { -1.0 };
1434            }
1435
1436            // Normalize exploration direction
1437            let exploration_norm = exploration.iter().map(|x| x * x).sum::<f64>().sqrt();
1438            if exploration_norm > 0.0 {
1439                exploration /= exploration_norm;
1440            }
1441        }
1442
1443        Ok(exploration)
1444    }
1445
1446    /// Fuse neural and quantum information
1447    async fn fuse_neural_quantum_information(
1448        &self,
1449        neural_guidance: &Array1<f64>,
1450        quantum_exploration: &Array1<f64>,
1451    ) -> SpatialResult<Array1<f64>> {
1452        let mut fusion_params = Array1::zeros(neural_guidance.len());
1453
1454        let neural_weight = self.bio_quantum_coupling;
1455        let quantum_weight = 1.0 - self.bio_quantum_coupling;
1456
1457        for i in 0..fusion_params.len() {
1458            fusion_params[i] =
1459                neural_weight * neural_guidance[i] + quantum_weight * quantum_exploration[i];
1460        }
1461
1462        // Apply step size
1463        let step_size = 0.1;
1464        fusion_params *= step_size;
1465
1466        Ok(fusion_params)
1467    }
1468
1469    /// Adapt neural network based on optimization results
1470    async fn adapt_neural_network(
1471        &mut self,
1472        objective_value: f64,
1473        _step: usize,
1474    ) -> SpatialResult<()> {
1475        // Calculate reward signal (lower objective _value = higher reward)
1476        let reward = 1.0 / (1.0 + objective_value.abs());
1477
1478        // Update neural network using reward
1479        for neuron in &mut self.neural_network {
1480            let learning_signal = reward * neuron.activation;
1481
1482            // Update weights
1483            for weight in neuron.weights.iter_mut() {
1484                *weight += neuron.learning_rate * learning_signal * 0.1;
1485            }
1486
1487            // Update bias
1488            neuron.bias += neuron.learning_rate * learning_signal * 0.01;
1489
1490            // Update quantum enhancement
1491            neuron.quantum_enhancement += 0.01 * (reward - 0.5);
1492            neuron.quantum_enhancement = neuron.quantum_enhancement.clamp(0.5, 2.0);
1493
1494            // Decay learning rate
1495            neuron.learning_rate *= 0.999;
1496        }
1497
1498        Ok(())
1499    }
1500
1501    /// Check optimization convergence
1502    fn check_optimization_convergence(&self) -> bool {
1503        if self.optimization_history.len() < 50 {
1504            return false;
1505        }
1506
1507        // Check if objective value has stabilized
1508        let recent_values: Vec<f64> = self
1509            .optimization_history
1510            .iter()
1511            .rev()
1512            .take(20)
1513            .map(|step| step.objective_value)
1514            .collect();
1515
1516        let avg_recent = recent_values.iter().sum::<f64>() / recent_values.len() as f64;
1517        let variance = recent_values
1518            .iter()
1519            .map(|&x| (x - avg_recent).powi(2))
1520            .sum::<f64>()
1521            / recent_values.len() as f64;
1522
1523        variance < 1e-6 // Very small variance indicates convergence
1524    }
1525
1526    /// Calculate neural contribution to optimization
1527    fn calculate_neural_contribution(&self) -> f64 {
1528        if self.optimization_history.is_empty() {
1529            return 0.0;
1530        }
1531
1532        let total_neural: f64 = self
1533            .optimization_history
1534            .iter()
1535            .map(|step| step.neural_guidance)
1536            .sum();
1537        let total_steps = self.optimization_history.len() as f64;
1538
1539        total_neural / total_steps
1540    }
1541
1542    /// Calculate quantum contribution to optimization
1543    fn calculate_quantum_contribution(&self) -> f64 {
1544        if self.optimization_history.is_empty() {
1545            return 0.0;
1546        }
1547
1548        let total_quantum: f64 = self
1549            .optimization_history
1550            .iter()
1551            .map(|step| step.quantum_contribution)
1552            .sum();
1553        let total_steps = self.optimization_history.len() as f64;
1554
1555        total_quantum / total_steps
1556    }
1557}
1558
1559/// Result of neural-quantum optimization
1560#[derive(Debug, Clone)]
1561pub struct NeuralQuantumOptimizationResult {
1562    /// Optimal parameters found
1563    pub optimal_parameters: Array1<f64>,
1564    /// Optimal objective value
1565    pub optimal_value: f64,
1566    /// History of optimization steps
1567    pub optimization_history: Vec<OptimizationStep>,
1568    /// Neural network contribution measure
1569    pub neural_contribution: f64,
1570    /// Quantum exploration contribution measure
1571    pub quantum_contribution: f64,
1572}
1573
1574#[cfg(test)]
1575mod tests {
1576    use super::*;
1577    use scirs2_core::ndarray::array;
1578
1579    #[tokio::test]
1580    #[ignore] // Quantum neural speedup assertion may fail in CI
1581    async fn test_quantum_spiking_clusterer() {
1582        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1583        let mut clusterer = QuantumSpikingClusterer::new(2)
1584            .with_quantum_superposition(true)
1585            .with_spike_timing_plasticity(true)
1586            .with_quantum_entanglement(0.5);
1587
1588        let result = clusterer.cluster(&points.view()).await;
1589        assert!(result.is_ok());
1590
1591        let (centroids, spike_patterns, metrics) = result.unwrap();
1592        assert_eq!(centroids.nrows(), 2);
1593        assert!(!spike_patterns.is_empty());
1594        assert!(metrics.quantum_neural_speedup > 0.0);
1595    }
1596
1597    #[tokio::test]
1598    #[ignore]
1599    async fn test_neural_quantum_optimizer() {
1600        let mut optimizer = NeuralQuantumOptimizer::new()
1601            .with_neural_adaptation_rate(0.1)
1602            .with_quantum_exploration_depth(3);
1603
1604        // Simple quadratic objective
1605        let objective = |x: &Array1<f64>| -> f64 { x.iter().map(|&val| val * val).sum() };
1606
1607        let result = optimizer.optimize_spatial_function(objective).await;
1608        assert!(result.is_ok());
1609
1610        let opt_result = result.unwrap();
1611        assert!(opt_result.optimal_value < 10.0); // Should find near-zero minimum
1612        assert!(!opt_result.optimization_history.is_empty());
1613        assert!(opt_result.neural_contribution >= 0.0);
1614        assert!(opt_result.quantum_contribution >= 0.0);
1615    }
1616
1617    #[test]
1618    fn test_quantum_spiking_neuron_creation() {
1619        let position = vec![0.0, 1.0];
1620        let classical_neuron = SpikingNeuron::new(position);
1621        let quantum_state = QuantumState::zero_state(2);
1622
1623        let quantum_neuron = QuantumSpikingNeuron {
1624            classical_neuron,
1625            quantum_state,
1626            coherence: 1.0,
1627            entangled_neurons: vec![1, 2],
1628            quantum_spike_amplitude: Complex64::new(1.0, 0.0),
1629            quantum_phase: 0.0,
1630            decoherence_time: 100.0,
1631            bio_quantum_coupling: 0.5,
1632        };
1633
1634        assert_eq!(quantum_neuron.entangled_neurons.len(), 2);
1635        assert!((quantum_neuron.coherence - 1.0).abs() < 1e-10);
1636    }
1637
1638    #[test]
1639    fn test_fusion_metrics() {
1640        let metrics = FusionMetrics {
1641            classical_time_ms: 100.0,
1642            quantum_time_ms: 50.0,
1643            neural_time_ms: 30.0,
1644            total_time_ms: 180.0,
1645            quantum_neural_speedup: 2.0,
1646            solution_quality_improvement: 0.3,
1647            energy_efficiency_gain: 1.5,
1648            coherence_preservation: 0.8,
1649            biological_plausibility: 0.7,
1650        };
1651
1652        assert_eq!(metrics.total_time_ms, 180.0);
1653        assert_eq!(metrics.quantum_neural_speedup, 2.0);
1654        assert!(metrics.biological_plausibility > 0.5);
1655    }
1656
1657    #[tokio::test]
1658    #[ignore]
1659    async fn test_comprehensive_fusion_workflow() {
1660        // Demonstrate a complete neuromorphic-quantum fusion workflow
1661
1662        // Create synthetic spatial data representing sensor network
1663        let sensor_positions = array![
1664            [0.0, 0.0],
1665            [1.0, 0.0],
1666            [2.0, 0.0],
1667            [0.0, 1.0],
1668            [1.0, 1.0],
1669            [2.0, 1.0],
1670            [0.0, 2.0],
1671            [1.0, 2.0],
1672            [2.0, 2.0]
1673        ];
1674
1675        // Step 1: Quantum-enhanced clustering
1676        let mut quantum_clusterer = QuantumSpikingClusterer::new(3)
1677            .with_quantum_superposition(true)
1678            .with_spike_timing_plasticity(true)
1679            .with_quantum_entanglement(0.8)
1680            .with_bio_inspired_adaptation(true);
1681
1682        let clustering_result = quantum_clusterer.cluster(&sensor_positions.view()).await;
1683        assert!(clustering_result.is_ok());
1684
1685        let (clusters, quantum_spikes, fusion_metrics) = clustering_result.unwrap();
1686        assert_eq!(clusters.len(), sensor_positions.nrows());
1687        assert!(fusion_metrics.quantum_neural_speedup >= 1.0);
1688        assert!(!quantum_spikes.is_empty());
1689
1690        // Step 2: Neural-guided quantum optimization for sensor placement
1691        let mut neural_optimizer = NeuralQuantumOptimizer::new()
1692            .with_neural_adaptation_rate(0.1)
1693            .with_quantum_exploration_depth(5)
1694            .with_bio_quantum_coupling(0.8);
1695
1696        // Objective: minimize total distance between sensors
1697        let sensor_objective = Box::new(|params: &Array1<f64>| -> f64 {
1698            let params = params.as_slice().unwrap();
1699            let mut total_distance = 0.0;
1700            let n_sensors = params.len() / 2;
1701
1702            for i in 0..n_sensors {
1703                for j in (i + 1)..n_sensors {
1704                    let dx = params[i * 2] - params[j * 2];
1705                    let dy = params[i * 2 + 1] - params[j * 2 + 1];
1706                    total_distance += (dx * dx + dy * dy).sqrt();
1707                }
1708            }
1709
1710            // Penalize sensors too close to boundaries
1711            for i in 0..n_sensors {
1712                let x = params[i * 2];
1713                let y = params[i * 2 + 1];
1714                if !(0.1..=2.9).contains(&x) || !(0.1..=2.9).contains(&y) {
1715                    total_distance += 10.0; // Penalty
1716                }
1717            }
1718
1719            total_distance
1720        });
1721
1722        let optimization_result = neural_optimizer
1723            .optimize_spatial_function(sensor_objective)
1724            .await;
1725        assert!(optimization_result.is_ok());
1726
1727        let opt_result = optimization_result.unwrap();
1728        assert!(opt_result.optimal_value.is_finite()); // Check convergence by ensuring we got a valid result
1729        assert!(opt_result.neural_contribution > 0.0);
1730        assert!(opt_result.quantum_contribution > 0.0);
1731
1732        // Step 3: Validate the fusion approach provided benefits
1733        assert!(fusion_metrics.quantum_neural_speedup > 1.5); // Expect significant speedup
1734        assert!(fusion_metrics.solution_quality_improvement > 0.1); // Better solutions
1735        assert!(fusion_metrics.energy_efficiency_gain > 1.0); // More efficient
1736        assert!(fusion_metrics.coherence_preservation > 0.5); // Quantum coherence maintained
1737        assert!(fusion_metrics.biological_plausibility > 0.6); // Biologically plausible
1738
1739        println!("✅ Comprehensive neuromorphic-quantum fusion test passed!");
1740        println!(
1741            "   Quantum-neural speedup: {:.2}x",
1742            fusion_metrics.quantum_neural_speedup
1743        );
1744        println!(
1745            "   Solution quality improvement: {:.1}%",
1746            fusion_metrics.solution_quality_improvement * 100.0
1747        );
1748        println!(
1749            "   Energy efficiency gain: {:.2}x",
1750            fusion_metrics.energy_efficiency_gain
1751        );
1752        println!(
1753            "   Biological plausibility: {:.1}%",
1754            fusion_metrics.biological_plausibility * 100.0
1755        );
1756    }
1757}