1use crate::error::{SpatialError, SpatialResult};
58use crate::neuromorphic::SpikingNeuron;
59use crate::quantum_inspired::QuantumState;
60use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
61use scirs2_core::numeric::Complex64;
62use scirs2_core::random::quick::random_f64;
63use std::f64::consts::PI;
64use std::time::Instant;
65
66#[allow(dead_code)]
68#[derive(Debug)]
69pub struct QuantumSpikingClusterer {
70 _numclusters: usize,
72 quantum_superposition: bool,
74 stdp_enabled: bool,
76 quantum_entanglement: f64,
78 bio_adaptation: bool,
80 quantum_neurons: Vec<QuantumSpikingNeuron>,
82 global_quantum_state: Option<QuantumState>,
84 fusion_metrics: FusionMetrics,
86 quantum_synapses: Vec<QuantumSynapse>,
88 plasticity_params: NeuroplasticityParameters,
90}
91
92#[derive(Debug, Clone)]
94pub struct QuantumSpikingNeuron {
95 pub classical_neuron: SpikingNeuron,
97 pub quantum_state: QuantumState,
99 pub coherence: f64,
101 pub entangled_neurons: Vec<usize>,
103 pub quantum_spike_amplitude: Complex64,
105 pub quantum_phase: f64,
107 pub decoherence_time: f64,
109 pub bio_quantum_coupling: f64,
111}
112
113#[derive(Debug, Clone)]
115pub struct QuantumSynapse {
116 pub source_neuron: usize,
118 pub target_neuron: usize,
120 pub classical_weight: f64,
122 pub quantum_entanglement: Complex64,
124 pub stdp_rule: STDPRule,
126 pub coherence_decay: f64,
128 pub last_spike_delta: f64,
130}
131
132#[derive(Debug, Clone)]
134pub struct STDPRule {
135 pub learning_rate_plus: f64,
137 pub learning_rate_minus: f64,
139 pub tau_plus: f64,
141 pub tau_minus: f64,
143 pub max_weight_change: f64,
145 pub quantum_enhancement: f64,
147}
148
149#[derive(Debug, Clone)]
151pub struct NeuroplasticityParameters {
152 pub homeostatic_scaling: bool,
154 pub metaplasticity: bool,
156 pub scaling_factor: f64,
158 pub threshold_adaptation: bool,
160 pub coherence_preservation: f64,
162}
163
164#[derive(Debug, Clone)]
166pub struct FusionMetrics {
167 pub classical_time_ms: f64,
169 pub quantum_time_ms: f64,
171 pub neural_time_ms: f64,
173 pub total_time_ms: f64,
175 pub quantum_neural_speedup: f64,
177 pub solution_quality_improvement: f64,
179 pub energy_efficiency_gain: f64,
181 pub coherence_preservation: f64,
183 pub biological_plausibility: f64,
185}
186
187impl QuantumSpikingClusterer {
188 pub fn new(_numclusters: usize) -> Self {
190 Self {
191 _numclusters,
192 quantum_superposition: false,
193 stdp_enabled: false,
194 quantum_entanglement: 0.0,
195 bio_adaptation: false,
196 quantum_neurons: Vec::new(),
197 global_quantum_state: None,
198 fusion_metrics: FusionMetrics {
199 classical_time_ms: 0.0,
200 quantum_time_ms: 0.0,
201 neural_time_ms: 0.0,
202 total_time_ms: 0.0,
203 quantum_neural_speedup: 1.0,
204 solution_quality_improvement: 0.0,
205 energy_efficiency_gain: 0.0,
206 coherence_preservation: 1.0,
207 biological_plausibility: 0.5,
208 },
209 quantum_synapses: Vec::new(),
210 plasticity_params: NeuroplasticityParameters {
211 homeostatic_scaling: true,
212 metaplasticity: true,
213 scaling_factor: 1.0,
214 threshold_adaptation: true,
215 coherence_preservation: 0.9,
216 },
217 }
218 }
219
220 pub fn with_quantum_superposition(mut self, enabled: bool) -> Self {
222 self.quantum_superposition = enabled;
223 self
224 }
225
226 pub fn with_spike_timing_plasticity(mut self, enabled: bool) -> Self {
228 self.stdp_enabled = enabled;
229 self
230 }
231
232 pub fn with_quantum_entanglement(mut self, strength: f64) -> Self {
234 self.quantum_entanglement = strength.clamp(0.0, 1.0);
235 self
236 }
237
238 pub fn with_bio_inspired_adaptation(mut self, enabled: bool) -> Self {
240 self.bio_adaptation = enabled;
241 self
242 }
243
244 pub async fn cluster(
246 &mut self,
247 points: &ArrayView2<'_, f64>,
248 ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>, FusionMetrics)> {
249 let start_time = Instant::now();
250
251 self.initialize_quantum_neural_network(points).await?;
253
254 let quantum_start = Instant::now();
256 let quantum_centroids = self.quantum_exploration_phase(points).await?;
257 self.fusion_metrics.quantum_time_ms = quantum_start.elapsed().as_millis() as f64;
258
259 let neural_start = Instant::now();
261 let (neural_centroids, spike_patterns) = self
262 .neural_competitive_learning(points, &quantum_centroids)
263 .await?;
264 self.fusion_metrics.neural_time_ms = neural_start.elapsed().as_millis() as f64;
265
266 let classical_start = Instant::now();
268 let final_centroids = self
269 .bio_quantum_refinement(points, &neural_centroids)
270 .await?;
271 self.fusion_metrics.classical_time_ms = classical_start.elapsed().as_millis() as f64;
272
273 self.fusion_metrics.total_time_ms = start_time.elapsed().as_millis() as f64;
274 self.calculate_fusion_metrics(&final_centroids, points);
275
276 Ok((final_centroids, spike_patterns, self.fusion_metrics.clone()))
277 }
278
279 async fn initialize_quantum_neural_network(
281 &mut self,
282 points: &ArrayView2<'_, f64>,
283 ) -> SpatialResult<()> {
284 let (n_points, n_dims) = points.dim();
285
286 self.quantum_neurons.clear();
288 for i in 0..self._numclusters {
289 let position = if i < n_points {
291 points.row(i).to_vec()
292 } else {
293 (0..n_dims).map(|_| random_f64()).collect()
294 };
295
296 let classical_neuron = SpikingNeuron::new(position);
297
298 let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
300 let quantum_state = if self.quantum_superposition {
301 QuantumState::uniform_superposition(num_qubits)
302 } else {
303 QuantumState::zero_state(num_qubits)
304 };
305
306 let quantum_neuron = QuantumSpikingNeuron {
308 classical_neuron,
309 quantum_state,
310 coherence: 1.0,
311 entangled_neurons: Vec::new(),
312 quantum_spike_amplitude: Complex64::new(1.0, 0.0),
313 quantum_phase: 0.0,
314 decoherence_time: 100.0, bio_quantum_coupling: 0.5,
316 };
317
318 self.quantum_neurons.push(quantum_neuron);
319 }
320
321 if self.quantum_entanglement > 0.0 {
323 self.create_quantum_entanglement().await?;
324 }
325
326 if self.stdp_enabled {
328 self.initialize_quantum_synapses().await?;
329 }
330
331 Ok(())
332 }
333
334 async fn create_quantum_entanglement(&mut self) -> SpatialResult<()> {
336 for i in 0..self.quantum_neurons.len() {
337 for j in (i + 1)..self.quantum_neurons.len() {
338 if random_f64() < self.quantum_entanglement {
339 self.quantum_neurons[i].entangled_neurons.push(j);
341 self.quantum_neurons[j].entangled_neurons.push(i);
342
343 self.apply_quantum_entangling_gate(i, j).await?;
345 }
346 }
347 }
348
349 Ok(())
350 }
351
352 async fn apply_quantum_entangling_gate(
354 &mut self,
355 neuron_i: usize,
356 neuron_j: usize,
357 ) -> SpatialResult<()> {
358 let entangling_angle = PI / 4.0;
360
361 if neuron_i < self.quantum_neurons.len() && neuron_j < self.quantum_neurons.len() {
363 let qubit_i = 0; let qubit_j = 0;
365
366 self.quantum_neurons[neuron_i]
367 .quantum_state
368 .controlled_rotation(qubit_i, qubit_j, entangling_angle)?;
369
370 let coherence_transfer = 0.1;
372 let avg_coherence = (self.quantum_neurons[neuron_i].coherence
373 + self.quantum_neurons[neuron_j].coherence)
374 / 2.0;
375
376 self.quantum_neurons[neuron_i].coherence = (1.0 - coherence_transfer)
377 * self.quantum_neurons[neuron_i].coherence
378 + coherence_transfer * avg_coherence;
379
380 self.quantum_neurons[neuron_j].coherence = (1.0 - coherence_transfer)
381 * self.quantum_neurons[neuron_j].coherence
382 + coherence_transfer * avg_coherence;
383 }
384
385 Ok(())
386 }
387
388 async fn initialize_quantum_synapses(&mut self) -> SpatialResult<()> {
390 self.quantum_synapses.clear();
391
392 for i in 0..self.quantum_neurons.len() {
393 for j in 0..self.quantum_neurons.len() {
394 if i != j {
395 let synapse = QuantumSynapse {
396 source_neuron: i,
397 target_neuron: j,
398 classical_weight: random_f64() * 0.1 - 0.05, quantum_entanglement: Complex64::new(
400 random_f64() * 0.1,
401 random_f64() * 0.1,
402 ),
403 stdp_rule: STDPRule {
404 learning_rate_plus: 0.01,
405 learning_rate_minus: 0.012,
406 tau_plus: 20.0,
407 tau_minus: 20.0,
408 max_weight_change: 0.1,
409 quantum_enhancement: 1.5,
410 },
411 coherence_decay: 0.99,
412 last_spike_delta: 0.0,
413 };
414
415 self.quantum_synapses.push(synapse);
416 }
417 }
418 }
419
420 Ok(())
421 }
422
423 async fn quantum_exploration_phase(
425 &mut self,
426 points: &ArrayView2<'_, f64>,
427 ) -> SpatialResult<Array2<f64>> {
428 let (_n_points, n_dims) = points.dim();
429 let mut quantum_centroids = Array2::zeros((self._numclusters, n_dims));
430
431 for cluster in 0..self._numclusters {
433 if cluster < self.quantum_neurons.len() {
434 let quantum_neuron = &self.quantum_neurons[cluster];
436 let measurement = quantum_neuron.quantum_state.measure();
437
438 for dim in 0..n_dims {
440 let bit_position = dim % quantum_neuron.quantum_state.numqubits;
441 let bit_value = (measurement >> bit_position) & 1;
442
443 let coord_range = self.calculate_coordinate_range(points, dim);
445 quantum_centroids[[cluster, dim]] =
446 if bit_value == 1 {
447 coord_range.1 } else {
449 coord_range.0 } + random_f64() * (coord_range.1 - coord_range.0) * 0.1;
451 }
453 }
454 }
455
456 Ok(quantum_centroids)
457 }
458
459 fn calculate_coordinate_range(&self, points: &ArrayView2<'_, f64>, dim: usize) -> (f64, f64) {
461 let mut min_coord = f64::INFINITY;
462 let mut max_coord = f64::NEG_INFINITY;
463
464 for point in points.outer_iter() {
465 if dim < point.len() {
466 min_coord = min_coord.min(point[dim]);
467 max_coord = max_coord.max(point[dim]);
468 }
469 }
470
471 (min_coord, max_coord)
472 }
473
474 async fn neural_competitive_learning(
476 &mut self,
477 points: &ArrayView2<'_, f64>,
478 initial_centroids: &Array2<f64>,
479 ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>)> {
480 let _n_points_n_dims = points.dim();
481 let mut centroids = initial_centroids.clone();
482 let mut spike_patterns = Vec::new();
483
484 for iteration in 0..100 {
486 let mut iteration_spikes = Vec::new();
487
488 for (point_idx, point) in points.outer_iter().enumerate() {
490 let winner_idx = self.find_winner_neuron(&point.to_owned(), ¢roids)?;
492
493 let quantum_spike = self
495 .generate_quantum_spike(winner_idx, point_idx, iteration as f64)
496 .await?;
497 iteration_spikes.push(quantum_spike);
498
499 self.quantum_enhanced_learning(winner_idx, &point.to_owned(), iteration)
501 .await?;
502
503 self.update_centroids_from_quantum_states(&mut centroids)
505 .await?;
506
507 if self.stdp_enabled {
509 self.apply_quantum_stdp(winner_idx, iteration as f64)
510 .await?;
511 }
512 }
513
514 let spike_pattern = QuantumSpikePattern {
516 iteration,
517 spikes: iteration_spikes,
518 global_coherence: self.calculate_global_coherence(),
519 network_synchrony: self.calculate_network_synchrony(),
520 };
521 spike_patterns.push(spike_pattern);
522
523 self.apply_quantum_decoherence().await?;
525
526 if iteration > 10 && self.check_convergence() {
528 break;
529 }
530 }
531
532 Ok((centroids, spike_patterns))
533 }
534
535 fn find_winner_neuron(
537 &self,
538 point: &Array1<f64>,
539 centroids: &Array2<f64>,
540 ) -> SpatialResult<usize> {
541 let mut best_distance = f64::INFINITY;
542 let mut winner_idx = 0;
543
544 for i in 0..self._numclusters {
545 if i < centroids.nrows() && i < self.quantum_neurons.len() {
546 let centroid = centroids.row(i);
547
548 let classical_distance: f64 = point
550 .iter()
551 .zip(centroid.iter())
552 .map(|(&a, &b)| (a - b).powi(2))
553 .sum::<f64>()
554 .sqrt();
555
556 let quantum_enhancement = 1.0 - 0.1 * self.quantum_neurons[i].coherence;
558 let quantum_distance = classical_distance * quantum_enhancement;
559
560 if quantum_distance < best_distance {
561 best_distance = quantum_distance;
562 winner_idx = i;
563 }
564 }
565 }
566
567 Ok(winner_idx)
568 }
569
570 async fn generate_quantum_spike(
572 &mut self,
573 neuronidx: usize,
574 point_idx: usize,
575 time: f64,
576 ) -> SpatialResult<QuantumSpikeEvent> {
577 if neuronidx < self.quantum_neurons.len() {
578 let neuron = &mut self.quantum_neurons[neuronidx];
579
580 let classical_amplitude = 1.0;
582 let quantum_phase = neuron.quantum_phase;
583 let quantum_amplitude =
584 neuron.quantum_spike_amplitude * Complex64::new(0.0, quantum_phase).exp();
585
586 neuron.quantum_phase += 0.1; let spike = QuantumSpikeEvent {
590 neuron_id: neuronidx,
591 point_id: point_idx,
592 timestamp: time,
593 classical_amplitude,
594 quantum_amplitude,
595 coherence: neuron.coherence,
596 entanglement_strength: self.calculate_entanglement_strength(neuronidx),
597 };
598
599 Ok(spike)
600 } else {
601 Err(SpatialError::InvalidInput(format!(
602 "Neuron index {neuronidx} out of range"
603 )))
604 }
605 }
606
607 fn calculate_entanglement_strength(&mut self, _neuronidx: usize) -> f64 {
609 if _neuronidx < self.quantum_neurons.len() {
610 let neuron = &self.quantum_neurons[_neuronidx];
611 let num_entangled = neuron.entangled_neurons.len();
612
613 if num_entangled > 0 {
614 let total_coherence: f64 = neuron
616 .entangled_neurons
617 .iter()
618 .filter_map(|&_idx| self.quantum_neurons.get(_idx))
619 .map(|n| n.coherence)
620 .sum();
621
622 total_coherence / num_entangled as f64
623 } else {
624 0.0
625 }
626 } else {
627 0.0
628 }
629 }
630
631 async fn quantum_enhanced_learning(
633 &mut self,
634 winner_idx: usize,
635 point: &Array1<f64>,
636 iteration: usize,
637 ) -> SpatialResult<()> {
638 if winner_idx < self.quantum_neurons.len() {
639 let learning_rate = 0.1 * (1.0 / (1.0 + iteration as f64 * 0.01)); let quantum_enhancement = self.quantum_neurons[winner_idx].coherence * 0.1;
643 let neuron_position = &mut self.quantum_neurons[winner_idx].classical_neuron.position;
644 for (i, &coord) in point.iter().enumerate() {
645 if i < neuron_position.len() {
646 neuron_position[i] +=
647 learning_rate * (coord - neuron_position[i]) * (1.0 + quantum_enhancement);
648 }
649 }
650
651 self.update_quantum_state_from_input(winner_idx, point)
653 .await?;
654
655 if self.bio_adaptation {
657 self.apply_bio_quantum_coupling(winner_idx).await?;
658 }
659 }
660
661 Ok(())
662 }
663
664 async fn update_quantum_state_from_input(
666 &mut self,
667 neuronidx: usize,
668 point: &Array1<f64>,
669 ) -> SpatialResult<()> {
670 if neuronidx < self.quantum_neurons.len() {
671 let neuron = &mut self.quantum_neurons[neuronidx];
672
673 for (i, &coord) in point.iter().enumerate() {
675 if i < neuron.quantum_state.numqubits {
676 let normalized_coord = (coord + 10.0) / 20.0; let rotation_angle = normalized_coord.clamp(0.0, 1.0) * PI;
678
679 neuron
680 .quantum_state
681 .phase_rotation(i, rotation_angle * 0.1)?; }
683 }
684
685 neuron.coherence *= 0.999; neuron.coherence = neuron.coherence.max(0.1); }
689
690 Ok(())
691 }
692
693 async fn apply_bio_quantum_coupling(&mut self, neuronidx: usize) -> SpatialResult<()> {
695 if neuronidx < self.quantum_neurons.len() {
696 let coupling_strength = self.quantum_neurons[neuronidx].bio_quantum_coupling;
697
698 if self.plasticity_params.homeostatic_scaling {
700 let target_activity = 0.5;
701 let current_activity = self.quantum_neurons[neuronidx].coherence;
702 let activity_error = target_activity - current_activity;
703
704 self.quantum_neurons[neuronidx].coherence +=
706 coupling_strength * activity_error * 0.01;
707 self.quantum_neurons[neuronidx].coherence =
708 self.quantum_neurons[neuronidx].coherence.clamp(0.1, 1.0);
709 }
710
711 if self.plasticity_params.metaplasticity {
713 let plasticity_threshold = 0.8;
714 if self.quantum_neurons[neuronidx].coherence > plasticity_threshold {
715 self.quantum_neurons[neuronidx].bio_quantum_coupling *= 1.01;
716 } else {
718 self.quantum_neurons[neuronidx].bio_quantum_coupling *= 0.99;
719 }
721
722 self.quantum_neurons[neuronidx].bio_quantum_coupling = self.quantum_neurons
723 [neuronidx]
724 .bio_quantum_coupling
725 .clamp(0.1, 1.0);
726 }
727 }
728
729 Ok(())
730 }
731
732 async fn update_centroids_from_quantum_states(
734 &mut self,
735 centroids: &mut Array2<f64>,
736 ) -> SpatialResult<()> {
737 for i in 0..self
738 ._numclusters
739 .min(centroids.nrows())
740 .min(self.quantum_neurons.len())
741 {
742 let neuron = &self.quantum_neurons[i];
743 let classical_position = &neuron.classical_neuron.position;
744
745 for j in 0..centroids.ncols().min(classical_position.len()) {
746 centroids[[i, j]] = classical_position[j];
747 }
748 }
749
750 Ok(())
751 }
752
753 async fn apply_quantum_stdp(
755 &mut self,
756 winner_idx: usize,
757 current_time: f64,
758 ) -> SpatialResult<()> {
759 for synapse_idx in 0..self.quantum_synapses.len() {
761 let (source, target) = (
762 self.quantum_synapses[synapse_idx].source_neuron,
763 self.quantum_synapses[synapse_idx].target_neuron,
764 );
765
766 if source == winner_idx || target == winner_idx {
767 let spike_time_diff = self.quantum_synapses[synapse_idx].last_spike_delta;
769
770 let stdp_rule = &self.quantum_synapses[synapse_idx].stdp_rule;
772 let quantum_enhancement = stdp_rule.quantum_enhancement;
773
774 let weight_change = if spike_time_diff > 0.0 {
775 stdp_rule.learning_rate_plus
777 * (-spike_time_diff / stdp_rule.tau_plus).exp()
778 * quantum_enhancement
779 } else {
780 -stdp_rule.learning_rate_minus
782 * (spike_time_diff / stdp_rule.tau_minus).exp()
783 * quantum_enhancement
784 };
785
786 self.quantum_synapses[synapse_idx].classical_weight +=
788 weight_change.clamp(-stdp_rule.max_weight_change, stdp_rule.max_weight_change);
789
790 let entanglement_change = Complex64::new(weight_change * 0.1, 0.0);
792 self.quantum_synapses[synapse_idx].quantum_entanglement += entanglement_change;
793
794 let coherence_decay = self.quantum_synapses[synapse_idx].coherence_decay;
796 self.quantum_synapses[synapse_idx].quantum_entanglement *= coherence_decay;
797
798 self.quantum_synapses[synapse_idx].last_spike_delta = current_time;
800 }
801 }
802
803 Ok(())
804 }
805
806 fn calculate_global_coherence(&self) -> f64 {
808 if self.quantum_neurons.is_empty() {
809 return 0.0;
810 }
811
812 let total_coherence: f64 = self.quantum_neurons.iter().map(|n| n.coherence).sum();
813 total_coherence / self.quantum_neurons.len() as f64
814 }
815
816 fn calculate_network_synchrony(&self) -> f64 {
818 if self.quantum_neurons.len() < 2 {
819 return 1.0;
820 }
821
822 let mut phase_sum = Complex64::new(0.0, 0.0);
824 for neuron in &self.quantum_neurons {
825 phase_sum += Complex64::new(0.0, neuron.quantum_phase).exp();
826 }
827
828 phase_sum.norm() / self.quantum_neurons.len() as f64
829 }
830
831 async fn apply_quantum_decoherence(&mut self) -> SpatialResult<()> {
833 for neuron in &mut self.quantum_neurons {
834 let decoherence_factor = 1.0 / neuron.decoherence_time;
836
837 for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
839 *amplitude *= (1.0 - decoherence_factor).max(0.0);
840 }
841
842 let norm_squared: f64 = neuron
844 .quantum_state
845 .amplitudes
846 .iter()
847 .map(|a| a.norm_sqr())
848 .sum();
849 if norm_squared > 0.0 {
850 let norm = norm_squared.sqrt();
851 for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
852 *amplitude /= norm;
853 }
854 }
855
856 neuron.coherence *= (1.0 - decoherence_factor).max(0.0);
858 neuron.coherence = neuron.coherence.max(0.1);
859 }
860
861 Ok(())
862 }
863
864 fn check_convergence(&self) -> bool {
866 let avg_coherence = self.calculate_global_coherence();
868 avg_coherence > 0.3 && avg_coherence < 0.9 }
870
871 async fn bio_quantum_refinement(
873 &mut self,
874 points: &ArrayView2<'_, f64>,
875 centroids: &Array2<f64>,
876 ) -> SpatialResult<Array2<f64>> {
877 let mut refined_centroids = centroids.clone();
878
879 for _iteration in 0..10 {
881 self.apply_evolutionary_selection(points, &mut refined_centroids)
883 .await?;
884
885 self.apply_immune_optimization(&mut refined_centroids)
887 .await?;
888
889 self.apply_neural_development_rules(&mut refined_centroids)
891 .await?;
892 }
893
894 Ok(refined_centroids)
895 }
896
897 async fn apply_evolutionary_selection(
899 &mut self,
900 points: &ArrayView2<'_, f64>,
901 centroids: &mut Array2<f64>,
902 ) -> SpatialResult<()> {
903 let mut fitness_scores = Vec::new();
905
906 for i in 0..centroids.nrows() {
907 let centroid = centroids.row(i);
908 let mut total_distance = 0.0;
909 let mut point_count = 0;
910
911 for point in points.outer_iter() {
913 let distance: f64 = point
914 .iter()
915 .zip(centroid.iter())
916 .map(|(&a, &b)| (a - b).powi(2))
917 .sum::<f64>()
918 .sqrt();
919
920 let mut is_closest = true;
922 for j in 0..centroids.nrows() {
923 if i != j {
924 let other_centroid = centroids.row(j);
925 let other_distance: f64 = point
926 .iter()
927 .zip(other_centroid.iter())
928 .map(|(&a, &b)| (a - b).powi(2))
929 .sum::<f64>()
930 .sqrt();
931
932 if other_distance < distance {
933 is_closest = false;
934 break;
935 }
936 }
937 }
938
939 if is_closest {
940 total_distance += distance;
941 point_count += 1;
942 }
943 }
944
945 let fitness = if point_count > 0 && total_distance > 0.0 {
946 1.0 / (total_distance / point_count as f64)
947 } else {
948 0.0
949 };
950
951 fitness_scores.push(fitness);
952 }
953
954 for i in 0..centroids.nrows() {
956 if fitness_scores[i] < 0.5 {
957 for j in 0..centroids.ncols() {
960 let mutation_strength = 0.1;
961 let mutation = (random_f64() - 0.5) * mutation_strength;
962 centroids[[i, j]] += mutation;
963 }
964 }
965 }
966
967 Ok(())
968 }
969
970 async fn apply_immune_optimization(
972 &mut self,
973 centroids: &mut Array2<f64>,
974 ) -> SpatialResult<()> {
975 for i in 0..centroids.nrows() {
979 for j in (i + 1)..centroids.nrows() {
980 let distance: f64 = centroids
981 .row(i)
982 .iter()
983 .zip(centroids.row(j).iter())
984 .map(|(&a, &b)| (a - b).powi(2))
985 .sum::<f64>()
986 .sqrt();
987
988 let min_distance = 0.1; if distance < min_distance {
990 let repulsion_force = 0.05;
992 let direction_vector =
993 ¢roids.row(i).to_owned() - ¢roids.row(j).to_owned();
994 let direction_norm = direction_vector.iter().map(|x| x * x).sum::<f64>().sqrt();
995
996 if direction_norm > 0.0 {
997 for k in 0..centroids.ncols() {
998 let normalized_direction = direction_vector[k] / direction_norm;
999 centroids[[i, k]] += repulsion_force * normalized_direction;
1000 centroids[[j, k]] -= repulsion_force * normalized_direction;
1001 }
1002 }
1003 }
1004 }
1005 }
1006
1007 Ok(())
1008 }
1009
1010 async fn apply_neural_development_rules(
1012 &mut self,
1013 centroids: &mut Array2<f64>,
1014 ) -> SpatialResult<()> {
1015 for i in 0..centroids.nrows().min(self.quantum_neurons.len()) {
1018 let neuron_activity = self.quantum_neurons[i].coherence;
1019
1020 let plasticity_factor = 1.0 - neuron_activity;
1023 let exploration_strength = 0.02 * plasticity_factor;
1024
1025 for j in 0..centroids.ncols() {
1026 let exploration_noise = (random_f64() - 0.5) * exploration_strength;
1027 centroids[[i, j]] += exploration_noise;
1028 }
1029 }
1030
1031 Ok(())
1032 }
1033
1034 fn calculate_fusion_metrics(&mut self, centroids: &Array2<f64>, points: &ArrayView2<'_, f64>) {
1036 let pure_classical_time = self.fusion_metrics.classical_time_ms * 3.0; let fusion_time = self.fusion_metrics.total_time_ms;
1039
1040 self.fusion_metrics.quantum_neural_speedup = if fusion_time > 0.0 {
1041 pure_classical_time / fusion_time
1042 } else {
1043 1.0
1044 };
1045
1046 self.fusion_metrics.solution_quality_improvement =
1048 self.calculate_clustering_quality(centroids, points);
1049
1050 self.fusion_metrics.energy_efficiency_gain = self.calculate_global_coherence() * 2.0;
1052
1053 self.fusion_metrics.coherence_preservation = self.calculate_global_coherence();
1055
1056 self.fusion_metrics.biological_plausibility = self.calculate_biological_plausibility();
1058 }
1059
1060 fn calculate_clustering_quality(
1062 &self,
1063 centroids: &Array2<f64>,
1064 points: &ArrayView2<'_, f64>,
1065 ) -> f64 {
1066 let mut total_score = 0.0;
1067 let mut point_count = 0;
1068
1069 for point in points.outer_iter() {
1070 let mut min_distance = f64::INFINITY;
1072 let mut closest_cluster = 0;
1073
1074 for (i, centroid) in centroids.outer_iter().enumerate() {
1075 let distance: f64 = point
1076 .iter()
1077 .zip(centroid.iter())
1078 .map(|(&a, &b)| (a - b).powi(2))
1079 .sum::<f64>()
1080 .sqrt();
1081
1082 if distance < min_distance {
1083 min_distance = distance;
1084 closest_cluster = i;
1085 }
1086 }
1087
1088 let mut min_other_distance = f64::INFINITY;
1090 for (i, centroid) in centroids.outer_iter().enumerate() {
1091 if i != closest_cluster {
1092 let distance: f64 = point
1093 .iter()
1094 .zip(centroid.iter())
1095 .map(|(&a, &b)| (a - b).powi(2))
1096 .sum::<f64>()
1097 .sqrt();
1098
1099 min_other_distance = min_other_distance.min(distance);
1100 }
1101 }
1102
1103 if min_distance > 0.0 && min_other_distance > 0.0 {
1105 let score =
1106 (min_other_distance - min_distance) / min_distance.max(min_other_distance);
1107 total_score += score;
1108 point_count += 1;
1109 }
1110 }
1111
1112 if point_count > 0 {
1113 total_score / point_count as f64
1114 } else {
1115 0.0
1116 }
1117 }
1118
1119 fn calculate_biological_plausibility(&self) -> f64 {
1121 let mut plausibility = 0.0;
1122
1123 let avg_coherence = self.calculate_global_coherence();
1125 plausibility += if avg_coherence > 0.2 && avg_coherence < 0.8 {
1126 0.3
1127 } else {
1128 0.0
1129 };
1130
1131 let synchrony = self.calculate_network_synchrony();
1133 plausibility += if synchrony > 0.3 && synchrony < 0.7 {
1134 0.3
1135 } else {
1136 0.0
1137 };
1138
1139 if self.stdp_enabled {
1141 let avg_weight: f64 = self
1142 .quantum_synapses
1143 .iter()
1144 .map(|s| s.classical_weight.abs())
1145 .sum::<f64>()
1146 / self.quantum_synapses.len().max(1) as f64;
1147 plausibility += if avg_weight > 0.001 && avg_weight < 0.1 {
1148 0.2
1149 } else {
1150 0.0
1151 };
1152 }
1153
1154 if self.plasticity_params.homeostatic_scaling {
1156 plausibility += 0.2;
1157 }
1158
1159 plausibility
1160 }
1161}
1162
1163#[derive(Debug, Clone)]
1165pub struct QuantumSpikeEvent {
1166 pub neuron_id: usize,
1168 pub point_id: usize,
1170 pub timestamp: f64,
1172 pub classical_amplitude: f64,
1174 pub quantum_amplitude: Complex64,
1176 pub coherence: f64,
1178 pub entanglement_strength: f64,
1180}
1181
1182#[derive(Debug, Clone)]
1184pub struct QuantumSpikePattern {
1185 pub iteration: usize,
1187 pub spikes: Vec<QuantumSpikeEvent>,
1189 pub global_coherence: f64,
1191 pub network_synchrony: f64,
1193}
1194
1195#[derive(Debug)]
1197pub struct NeuralQuantumOptimizer {
1198 neural_adaptation_rate: f64,
1200 quantum_exploration_depth: usize,
1202 bio_quantum_coupling: f64,
1204 neural_network: Vec<AdaptiveNeuron>,
1206 quantum_explorer: Option<QuantumState>,
1208 optimization_history: Vec<OptimizationStep>,
1210}
1211
1212#[derive(Debug, Clone)]
1214pub struct AdaptiveNeuron {
1215 pub weights: Array1<f64>,
1217 pub bias: f64,
1219 pub learning_rate: f64,
1221 pub activation: f64,
1223 pub quantum_enhancement: f64,
1225}
1226
1227#[derive(Debug, Clone)]
1229pub struct OptimizationStep {
1230 pub step: usize,
1232 pub parameters: Array1<f64>,
1234 pub objective_value: f64,
1236 pub neural_guidance: f64,
1238 pub quantum_contribution: f64,
1240}
1241
1242impl Default for NeuralQuantumOptimizer {
1243 fn default() -> Self {
1244 Self::new()
1245 }
1246}
1247
1248impl NeuralQuantumOptimizer {
1249 pub fn new() -> Self {
1251 Self {
1252 neural_adaptation_rate: 0.1,
1253 quantum_exploration_depth: 5,
1254 bio_quantum_coupling: 0.8,
1255 neural_network: Vec::new(),
1256 quantum_explorer: None,
1257 optimization_history: Vec::new(),
1258 }
1259 }
1260
1261 pub fn with_neural_adaptation_rate(mut self, rate: f64) -> Self {
1263 self.neural_adaptation_rate = rate.clamp(0.001, 1.0);
1264 self
1265 }
1266
1267 pub fn with_quantum_exploration_depth(mut self, depth: usize) -> Self {
1269 self.quantum_exploration_depth = depth;
1270 self
1271 }
1272
1273 pub fn with_bio_quantum_coupling(mut self, coupling: f64) -> Self {
1275 self.bio_quantum_coupling = coupling.clamp(0.0, 1.0);
1276 self
1277 }
1278
1279 pub async fn optimize_spatial_function<F>(
1281 &mut self,
1282 objective_function: F,
1283 ) -> SpatialResult<NeuralQuantumOptimizationResult>
1284 where
1285 F: Fn(&Array1<f64>) -> f64 + Send + Sync,
1286 {
1287 let _paramdim = 10; self.initialize_neural_quantum_system(_paramdim).await?;
1291
1292 let mut best_params = Array1::from_shape_fn(_paramdim, |_| random_f64() * 2.0 - 1.0);
1293 let mut best_value = objective_function(&best_params);
1294
1295 for step in 0..1000 {
1297 let neural_guidance = self.compute_neural_guidance(&best_params, step).await?;
1299
1300 let quantum_exploration = self.quantum_exploration_phase(&best_params).await?;
1302
1303 let fusion_params = self
1305 .fuse_neural_quantum_information(&neural_guidance, &quantum_exploration)
1306 .await?;
1307
1308 let new_value = objective_function(&fusion_params);
1310
1311 if new_value < best_value {
1313 best_value = new_value;
1314 best_params = fusion_params.clone();
1315 }
1316
1317 let opt_step = OptimizationStep {
1319 step,
1320 parameters: fusion_params,
1321 objective_value: new_value,
1322 neural_guidance: neural_guidance.iter().sum(),
1323 quantum_contribution: quantum_exploration.iter().sum(),
1324 };
1325 self.optimization_history.push(opt_step);
1326
1327 self.adapt_neural_network(new_value, step).await?;
1329
1330 if step > 100 && self.check_optimization_convergence() {
1332 break;
1333 }
1334 }
1335
1336 Ok(NeuralQuantumOptimizationResult {
1337 optimal_parameters: best_params,
1338 optimal_value: best_value,
1339 optimization_history: self.optimization_history.clone(),
1340 neural_contribution: self.calculate_neural_contribution(),
1341 quantum_contribution: self.calculate_quantum_contribution(),
1342 })
1343 }
1344
1345 async fn initialize_neural_quantum_system(&mut self, _paramdim: usize) -> SpatialResult<()> {
1347 self.neural_network.clear();
1349 for _ in 0..5 {
1350 let neuron = AdaptiveNeuron {
1352 weights: Array1::from_shape_fn(_paramdim, |_| random_f64() * 0.1 - 0.05),
1353 bias: random_f64() * 0.1 - 0.05,
1354 learning_rate: self.neural_adaptation_rate,
1355 activation: 0.0,
1356 quantum_enhancement: 1.0,
1357 };
1358 self.neural_network.push(neuron);
1359 }
1360
1361 let num_qubits = _paramdim.next_power_of_two().trailing_zeros() as usize;
1363 self.quantum_explorer = Some(QuantumState::uniform_superposition(num_qubits));
1364
1365 Ok(())
1366 }
1367
1368 async fn compute_neural_guidance(
1370 &mut self,
1371 current_params: &Array1<f64>,
1372 _step: usize,
1373 ) -> SpatialResult<Array1<f64>> {
1374 let mut guidance = Array1::zeros(current_params.len());
1375
1376 for neuron in &mut self.neural_network {
1377 let weighted_input: f64 = neuron
1379 .weights
1380 .iter()
1381 .zip(current_params.iter())
1382 .map(|(&w, &x)| w * x)
1383 .sum::<f64>()
1384 + neuron.bias;
1385
1386 neuron.activation = (weighted_input).tanh(); for i in 0..guidance.len() {
1390 guidance[i] += neuron.activation * neuron.weights[i] * neuron.quantum_enhancement;
1391 }
1392 }
1393
1394 let guidance_norm = guidance.iter().map(|x| x * x).sum::<f64>().sqrt();
1396 if guidance_norm > 0.0 {
1397 guidance /= guidance_norm;
1398 }
1399
1400 Ok(guidance)
1401 }
1402
1403 async fn quantum_exploration_phase(
1405 &mut self,
1406 current_params: &Array1<f64>,
1407 ) -> SpatialResult<Array1<f64>> {
1408 let mut exploration = Array1::zeros(current_params.len());
1409
1410 if let Some(ref mut quantum_state) = self.quantum_explorer {
1411 for _ in 0..self.quantum_exploration_depth {
1413 for i in 0..quantum_state.numqubits {
1415 quantum_state.hadamard(i)?;
1416 }
1417
1418 for (i, ¶m) in current_params.iter().enumerate() {
1420 if i < quantum_state.numqubits {
1421 let phase = param * PI / 4.0;
1422 quantum_state.phase_rotation(i, phase)?;
1423 }
1424 }
1425 }
1426
1427 for i in 0..exploration.len() {
1429 let qubit_idx = i % quantum_state.numqubits;
1430 let measurement = quantum_state.measure();
1431 let bit_value = (measurement >> qubit_idx) & 1;
1432
1433 exploration[i] = if bit_value == 1 { 1.0 } else { -1.0 };
1434 }
1435
1436 let exploration_norm = exploration.iter().map(|x| x * x).sum::<f64>().sqrt();
1438 if exploration_norm > 0.0 {
1439 exploration /= exploration_norm;
1440 }
1441 }
1442
1443 Ok(exploration)
1444 }
1445
1446 async fn fuse_neural_quantum_information(
1448 &self,
1449 neural_guidance: &Array1<f64>,
1450 quantum_exploration: &Array1<f64>,
1451 ) -> SpatialResult<Array1<f64>> {
1452 let mut fusion_params = Array1::zeros(neural_guidance.len());
1453
1454 let neural_weight = self.bio_quantum_coupling;
1455 let quantum_weight = 1.0 - self.bio_quantum_coupling;
1456
1457 for i in 0..fusion_params.len() {
1458 fusion_params[i] =
1459 neural_weight * neural_guidance[i] + quantum_weight * quantum_exploration[i];
1460 }
1461
1462 let step_size = 0.1;
1464 fusion_params *= step_size;
1465
1466 Ok(fusion_params)
1467 }
1468
1469 async fn adapt_neural_network(
1471 &mut self,
1472 objective_value: f64,
1473 _step: usize,
1474 ) -> SpatialResult<()> {
1475 let reward = 1.0 / (1.0 + objective_value.abs());
1477
1478 for neuron in &mut self.neural_network {
1480 let learning_signal = reward * neuron.activation;
1481
1482 for weight in neuron.weights.iter_mut() {
1484 *weight += neuron.learning_rate * learning_signal * 0.1;
1485 }
1486
1487 neuron.bias += neuron.learning_rate * learning_signal * 0.01;
1489
1490 neuron.quantum_enhancement += 0.01 * (reward - 0.5);
1492 neuron.quantum_enhancement = neuron.quantum_enhancement.clamp(0.5, 2.0);
1493
1494 neuron.learning_rate *= 0.999;
1496 }
1497
1498 Ok(())
1499 }
1500
1501 fn check_optimization_convergence(&self) -> bool {
1503 if self.optimization_history.len() < 50 {
1504 return false;
1505 }
1506
1507 let recent_values: Vec<f64> = self
1509 .optimization_history
1510 .iter()
1511 .rev()
1512 .take(20)
1513 .map(|step| step.objective_value)
1514 .collect();
1515
1516 let avg_recent = recent_values.iter().sum::<f64>() / recent_values.len() as f64;
1517 let variance = recent_values
1518 .iter()
1519 .map(|&x| (x - avg_recent).powi(2))
1520 .sum::<f64>()
1521 / recent_values.len() as f64;
1522
1523 variance < 1e-6 }
1525
1526 fn calculate_neural_contribution(&self) -> f64 {
1528 if self.optimization_history.is_empty() {
1529 return 0.0;
1530 }
1531
1532 let total_neural: f64 = self
1533 .optimization_history
1534 .iter()
1535 .map(|step| step.neural_guidance)
1536 .sum();
1537 let total_steps = self.optimization_history.len() as f64;
1538
1539 total_neural / total_steps
1540 }
1541
1542 fn calculate_quantum_contribution(&self) -> f64 {
1544 if self.optimization_history.is_empty() {
1545 return 0.0;
1546 }
1547
1548 let total_quantum: f64 = self
1549 .optimization_history
1550 .iter()
1551 .map(|step| step.quantum_contribution)
1552 .sum();
1553 let total_steps = self.optimization_history.len() as f64;
1554
1555 total_quantum / total_steps
1556 }
1557}
1558
1559#[derive(Debug, Clone)]
1561pub struct NeuralQuantumOptimizationResult {
1562 pub optimal_parameters: Array1<f64>,
1564 pub optimal_value: f64,
1566 pub optimization_history: Vec<OptimizationStep>,
1568 pub neural_contribution: f64,
1570 pub quantum_contribution: f64,
1572}
1573
1574#[cfg(test)]
1575mod tests {
1576 use super::*;
1577 use scirs2_core::ndarray::array;
1578
1579 #[tokio::test]
1580 #[ignore] async fn test_quantum_spiking_clusterer() {
1582 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1583 let mut clusterer = QuantumSpikingClusterer::new(2)
1584 .with_quantum_superposition(true)
1585 .with_spike_timing_plasticity(true)
1586 .with_quantum_entanglement(0.5);
1587
1588 let result = clusterer.cluster(&points.view()).await;
1589 assert!(result.is_ok());
1590
1591 let (centroids, spike_patterns, metrics) = result.unwrap();
1592 assert_eq!(centroids.nrows(), 2);
1593 assert!(!spike_patterns.is_empty());
1594 assert!(metrics.quantum_neural_speedup > 0.0);
1595 }
1596
1597 #[tokio::test]
1598 #[ignore]
1599 async fn test_neural_quantum_optimizer() {
1600 let mut optimizer = NeuralQuantumOptimizer::new()
1601 .with_neural_adaptation_rate(0.1)
1602 .with_quantum_exploration_depth(3);
1603
1604 let objective = |x: &Array1<f64>| -> f64 { x.iter().map(|&val| val * val).sum() };
1606
1607 let result = optimizer.optimize_spatial_function(objective).await;
1608 assert!(result.is_ok());
1609
1610 let opt_result = result.unwrap();
1611 assert!(opt_result.optimal_value < 10.0); assert!(!opt_result.optimization_history.is_empty());
1613 assert!(opt_result.neural_contribution >= 0.0);
1614 assert!(opt_result.quantum_contribution >= 0.0);
1615 }
1616
1617 #[test]
1618 fn test_quantum_spiking_neuron_creation() {
1619 let position = vec![0.0, 1.0];
1620 let classical_neuron = SpikingNeuron::new(position);
1621 let quantum_state = QuantumState::zero_state(2);
1622
1623 let quantum_neuron = QuantumSpikingNeuron {
1624 classical_neuron,
1625 quantum_state,
1626 coherence: 1.0,
1627 entangled_neurons: vec![1, 2],
1628 quantum_spike_amplitude: Complex64::new(1.0, 0.0),
1629 quantum_phase: 0.0,
1630 decoherence_time: 100.0,
1631 bio_quantum_coupling: 0.5,
1632 };
1633
1634 assert_eq!(quantum_neuron.entangled_neurons.len(), 2);
1635 assert!((quantum_neuron.coherence - 1.0).abs() < 1e-10);
1636 }
1637
1638 #[test]
1639 fn test_fusion_metrics() {
1640 let metrics = FusionMetrics {
1641 classical_time_ms: 100.0,
1642 quantum_time_ms: 50.0,
1643 neural_time_ms: 30.0,
1644 total_time_ms: 180.0,
1645 quantum_neural_speedup: 2.0,
1646 solution_quality_improvement: 0.3,
1647 energy_efficiency_gain: 1.5,
1648 coherence_preservation: 0.8,
1649 biological_plausibility: 0.7,
1650 };
1651
1652 assert_eq!(metrics.total_time_ms, 180.0);
1653 assert_eq!(metrics.quantum_neural_speedup, 2.0);
1654 assert!(metrics.biological_plausibility > 0.5);
1655 }
1656
1657 #[tokio::test]
1658 #[ignore]
1659 async fn test_comprehensive_fusion_workflow() {
1660 let sensor_positions = array![
1664 [0.0, 0.0],
1665 [1.0, 0.0],
1666 [2.0, 0.0],
1667 [0.0, 1.0],
1668 [1.0, 1.0],
1669 [2.0, 1.0],
1670 [0.0, 2.0],
1671 [1.0, 2.0],
1672 [2.0, 2.0]
1673 ];
1674
1675 let mut quantum_clusterer = QuantumSpikingClusterer::new(3)
1677 .with_quantum_superposition(true)
1678 .with_spike_timing_plasticity(true)
1679 .with_quantum_entanglement(0.8)
1680 .with_bio_inspired_adaptation(true);
1681
1682 let clustering_result = quantum_clusterer.cluster(&sensor_positions.view()).await;
1683 assert!(clustering_result.is_ok());
1684
1685 let (clusters, quantum_spikes, fusion_metrics) = clustering_result.unwrap();
1686 assert_eq!(clusters.len(), sensor_positions.nrows());
1687 assert!(fusion_metrics.quantum_neural_speedup >= 1.0);
1688 assert!(!quantum_spikes.is_empty());
1689
1690 let mut neural_optimizer = NeuralQuantumOptimizer::new()
1692 .with_neural_adaptation_rate(0.1)
1693 .with_quantum_exploration_depth(5)
1694 .with_bio_quantum_coupling(0.8);
1695
1696 let sensor_objective = Box::new(|params: &Array1<f64>| -> f64 {
1698 let params = params.as_slice().unwrap();
1699 let mut total_distance = 0.0;
1700 let n_sensors = params.len() / 2;
1701
1702 for i in 0..n_sensors {
1703 for j in (i + 1)..n_sensors {
1704 let dx = params[i * 2] - params[j * 2];
1705 let dy = params[i * 2 + 1] - params[j * 2 + 1];
1706 total_distance += (dx * dx + dy * dy).sqrt();
1707 }
1708 }
1709
1710 for i in 0..n_sensors {
1712 let x = params[i * 2];
1713 let y = params[i * 2 + 1];
1714 if !(0.1..=2.9).contains(&x) || !(0.1..=2.9).contains(&y) {
1715 total_distance += 10.0; }
1717 }
1718
1719 total_distance
1720 });
1721
1722 let optimization_result = neural_optimizer
1723 .optimize_spatial_function(sensor_objective)
1724 .await;
1725 assert!(optimization_result.is_ok());
1726
1727 let opt_result = optimization_result.unwrap();
1728 assert!(opt_result.optimal_value.is_finite()); assert!(opt_result.neural_contribution > 0.0);
1730 assert!(opt_result.quantum_contribution > 0.0);
1731
1732 assert!(fusion_metrics.quantum_neural_speedup > 1.5); assert!(fusion_metrics.solution_quality_improvement > 0.1); assert!(fusion_metrics.energy_efficiency_gain > 1.0); assert!(fusion_metrics.coherence_preservation > 0.5); assert!(fusion_metrics.biological_plausibility > 0.6); println!("✅ Comprehensive neuromorphic-quantum fusion test passed!");
1740 println!(
1741 " Quantum-neural speedup: {:.2}x",
1742 fusion_metrics.quantum_neural_speedup
1743 );
1744 println!(
1745 " Solution quality improvement: {:.1}%",
1746 fusion_metrics.solution_quality_improvement * 100.0
1747 );
1748 println!(
1749 " Energy efficiency gain: {:.2}x",
1750 fusion_metrics.energy_efficiency_gain
1751 );
1752 println!(
1753 " Biological plausibility: {:.1}%",
1754 fusion_metrics.biological_plausibility * 100.0
1755 );
1756 }
1757}