pub struct LogNormal<F>{ /* private fields */ }Expand description
The log-normal distribution ln N(mean, std_dev**2).
If X is log-normal distributed, then ln(X) is N(mean, std_dev**2)
distributed.
§Example
use rand_distr::{LogNormal, Distribution};
// mean 2, standard deviation 3
let log_normal = LogNormal::new(2.0, 3.0).unwrap();
let v = log_normal.sample(&mut rand::thread_rng());
println!("{} is from an ln N(2, 9) distribution", v)Implementations§
Source§impl<F> LogNormal<F>
impl<F> LogNormal<F>
Sourcepub fn new(mu: F, sigma: F) -> Result<LogNormal<F>, Error>
pub fn new(mu: F, sigma: F) -> Result<LogNormal<F>, Error>
Construct, from (log-space) mean and standard deviation
Parameters are the “standard” log-space measures (these are the mean and standard deviation of the logarithm of samples):
mu(μ, unrestricted) is the mean of the underlying distributionsigma(σ, must be finite) is the standard deviation of the underlying Normal distribution
Sourcepub fn from_mean_cv(mean: F, cv: F) -> Result<LogNormal<F>, Error>
pub fn from_mean_cv(mean: F, cv: F) -> Result<LogNormal<F>, Error>
Construct, from (linear-space) mean and coefficient of variation
Parameters are linear-space measures:
- mean (
μ > 0) is the (real) mean of the distribution - coefficient of variation (
cv = σ / μ, requiringcv ≥ 0) is a standardized measure of dispersion
As a special exception, μ = 0, cv = 0 is allowed (samples are -inf).
Sourcepub fn from_zscore(&self, zscore: F) -> F
pub fn from_zscore(&self, zscore: F) -> F
Sample from a z-score
This may be useful for generating correlated samples x1 and x2
from two different distributions, as follows.
let mut rng = thread_rng();
let z = StandardNormal.sample(&mut rng);
let x1 = LogNormal::from_mean_cv(3.0, 1.0).unwrap().from_zscore(z);
let x2 = LogNormal::from_mean_cv(2.0, 4.0).unwrap().from_zscore(z);Trait Implementations§
Source§impl<F> Distribution<F> for LogNormal<F>
impl<F> Distribution<F> for LogNormal<F>
impl<F> Copy for LogNormal<F>
Auto Trait Implementations§
impl<F> Freeze for LogNormal<F>where
F: Freeze,
impl<F> RefUnwindSafe for LogNormal<F>where
F: RefUnwindSafe,
impl<F> Send for LogNormal<F>where
F: Send,
impl<F> Sync for LogNormal<F>where
F: Sync,
impl<F> Unpin for LogNormal<F>where
F: Unpin,
impl<F> UnwindSafe for LogNormal<F>where
F: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.