pub struct CholeskyFactorized<S>where
S: Data,{
pub factor: ArrayBase<S, Dim<[usize; 2]>>,
pub uplo: UPLO,
}Expand description
Cholesky decomposition of Hermitian (or real symmetric) positive definite matrix
Fields§
§factor: ArrayBase<S, Dim<[usize; 2]>>L from the decomposition A = L * L^H or U from the decomposition
A = U^H * U.
uplo: UPLOIf this is UPLO::Lower, then self.factor is L. If this is
UPLO::Upper, then self.factor is U.
Implementations§
Source§impl<A, S> CholeskyFactorized<S>
impl<A, S> CholeskyFactorized<S>
Trait Implementations§
Source§impl<A, S> DeterminantC for CholeskyFactorized<S>
impl<A, S> DeterminantC for CholeskyFactorized<S>
type Output = <A as Scalar>::Real
Source§fn detc(&self) -> <CholeskyFactorized<S> as DeterminantC>::Output
fn detc(&self) -> <CholeskyFactorized<S> as DeterminantC>::Output
Computes the determinant of the Hermitian (or real symmetric) positive
definite matrix.
Source§fn ln_detc(&self) -> <CholeskyFactorized<S> as DeterminantC>::Output
fn ln_detc(&self) -> <CholeskyFactorized<S> as DeterminantC>::Output
Computes the natural log of the determinant of the Hermitian (or real
symmetric) positive definite matrix. Read more
Source§impl<A, S> DeterminantCInto for CholeskyFactorized<S>
impl<A, S> DeterminantCInto for CholeskyFactorized<S>
type Output = <A as Scalar>::Real
Source§fn detc_into(self) -> <CholeskyFactorized<S> as DeterminantCInto>::Output
fn detc_into(self) -> <CholeskyFactorized<S> as DeterminantCInto>::Output
Computes the determinant of the Hermitian (or real symmetric) positive
definite matrix.
Source§fn ln_detc_into(self) -> <CholeskyFactorized<S> as DeterminantCInto>::Output
fn ln_detc_into(self) -> <CholeskyFactorized<S> as DeterminantCInto>::Output
Computes the natural log of the determinant of the Hermitian (or real
symmetric) positive definite matrix. Read more
Source§impl<A, S> InverseC for CholeskyFactorized<S>
impl<A, S> InverseC for CholeskyFactorized<S>
Source§impl<A, S> InverseCInto for CholeskyFactorized<S>
impl<A, S> InverseCInto for CholeskyFactorized<S>
type Output = ArrayBase<S, Dim<[usize; 2]>>
Source§fn invc_into(
self,
) -> Result<<CholeskyFactorized<S> as InverseCInto>::Output, LinalgError>
fn invc_into( self, ) -> Result<<CholeskyFactorized<S> as InverseCInto>::Output, LinalgError>
Computes the inverse of the Hermitian (or real symmetric) positive
definite matrix.
Source§impl<A, S> SolveC<A> for CholeskyFactorized<S>
impl<A, S> SolveC<A> for CholeskyFactorized<S>
Source§fn solvec_inplace<'a, Sb>(
&self,
b: &'a mut ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
fn solvec_inplace<'a, Sb>(
&self,
b: &'a mut ArrayBase<Sb, Dim<[usize; 1]>>,
) -> Result<&'a mut ArrayBase<Sb, Dim<[usize; 1]>>, LinalgError>where
Sb: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b with Hermitian (or real
symmetric) positive definite matrix A, where A is self, b is
the argument, and x is the successful result. The value of x is
also assigned to the argument.Source§fn solvec<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
fn solvec<S>(
&self,
b: &ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<OwnedRepr<A>, Dim<[usize; 1]>>, LinalgError>where
S: Data<Elem = A>,
Solves a system of linear equations
A * x = b with Hermitian (or real
symmetric) positive definite matrix A, where A is self, b is
the argument, and x is the successful result.Source§fn solvec_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
fn solvec_into<S>(
&self,
b: ArrayBase<S, Dim<[usize; 1]>>,
) -> Result<ArrayBase<S, Dim<[usize; 1]>>, LinalgError>where
S: DataMut<Elem = A>,
Solves a system of linear equations
A * x = b with Hermitian (or real
symmetric) positive definite matrix A, where A is self, b is
the argument, and x is the successful result.Auto Trait Implementations§
impl<S> Freeze for CholeskyFactorized<S>where
S: Freeze,
impl<S> RefUnwindSafe for CholeskyFactorized<S>
impl<S> Send for CholeskyFactorized<S>where
S: Send,
impl<S> Sync for CholeskyFactorized<S>where
S: Sync,
impl<S> Unpin for CholeskyFactorized<S>where
S: Unpin,
impl<S> UnwindSafe for CholeskyFactorized<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.