pub struct SimdVectorOps { /* private fields */ }
Expand description
SIMD-accelerated vector operations using core unified system
Implementations§
Source§impl SimdVectorOps
impl SimdVectorOps
Sourcepub fn with_config(_config: SimdConfig) -> Self
pub fn with_config(_config: SimdConfig) -> Self
Create with specific configuration (for testing/compatibility)
Sourcepub fn config(&self) -> SimdConfig
pub fn config(&self) -> SimdConfig
Get the SIMD configuration (for compatibility)
Sourcepub fn platform_capabilities(&self) -> PlatformCapabilities
pub fn platform_capabilities(&self) -> PlatformCapabilities
Get platform capabilities for debugging/testing
Sourcepub fn dot_product(
&self,
a: &ArrayView1<'_, f64>,
b: &ArrayView1<'_, f64>,
) -> f64
pub fn dot_product( &self, a: &ArrayView1<'_, f64>, b: &ArrayView1<'_, f64>, ) -> f64
SIMD-accelerated dot product
Sourcepub fn add(
&self,
a: &ArrayView1<'_, f64>,
b: &ArrayView1<'_, f64>,
) -> Array1<f64>
pub fn add( &self, a: &ArrayView1<'_, f64>, b: &ArrayView1<'_, f64>, ) -> Array1<f64>
SIMD-accelerated vector addition: result = a + b
Sourcepub fn sub(
&self,
a: &ArrayView1<'_, f64>,
b: &ArrayView1<'_, f64>,
) -> Array1<f64>
pub fn sub( &self, a: &ArrayView1<'_, f64>, b: &ArrayView1<'_, f64>, ) -> Array1<f64>
SIMD-accelerated vector subtraction: result = a - b
Sourcepub fn scale(&self, alpha: f64, a: &ArrayView1<'_, f64>) -> Array1<f64>
pub fn scale(&self, alpha: f64, a: &ArrayView1<'_, f64>) -> Array1<f64>
SIMD-accelerated scalar multiplication: result = alpha * a
Sourcepub fn axpy(
&self,
alpha: f64,
x: &ArrayView1<'_, f64>,
y: &ArrayView1<'_, f64>,
) -> Array1<f64>
pub fn axpy( &self, alpha: f64, x: &ArrayView1<'_, f64>, y: &ArrayView1<'_, f64>, ) -> Array1<f64>
SIMD-accelerated AXPY operation: result = alpha * x + y
Sourcepub fn norm(&self, a: &ArrayView1<'_, f64>) -> f64
pub fn norm(&self, a: &ArrayView1<'_, f64>) -> f64
SIMD-accelerated vector norm (L2)
Sourcepub fn matvec(
&self,
matrix: &ArrayView2<'_, f64>,
vector: &ArrayView1<'_, f64>,
) -> Array1<f64>
pub fn matvec( &self, matrix: &ArrayView2<'_, f64>, vector: &ArrayView1<'_, f64>, ) -> Array1<f64>
SIMD-accelerated matrix-vector multiplication
Trait Implementations§
Auto Trait Implementations§
impl Freeze for SimdVectorOps
impl RefUnwindSafe for SimdVectorOps
impl Send for SimdVectorOps
impl Sync for SimdVectorOps
impl Unpin for SimdVectorOps
impl UnwindSafe for SimdVectorOps
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.