Struct GPTModel

Source
pub struct GPTModel<F: Float + Debug + ScalarOperand + Send + Sync> { /* private fields */ }
Expand description

GPT model implementation

Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync> GPTModel<F>

Source

pub fn new(config: GPTConfig) -> Result<Self>

Create a new GPT model

Examples found in repository?
examples/gpt_example.rs (line 18)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("GPT Model Example");
7
8    // Create a small GPT model for demonstration
9    println!("Creating a small GPT model...");
10
11    let config = GPTConfig::custom(
12        10000, // vocab_size
13        128,   // hidden_size
14        2,     // num_hidden_layers
15        2,     // num_attention_heads
16    );
17
18    let model = GPTModel::<f32>::new(config)?;
19
20    // Create dummy input (batch_size=2, seq_len=16)
21    // Input tensor contains token IDs
22    let input = Array::from_shape_fn(
23        IxDyn(&[2, 16]),
24        |_| rand::random::<f32>() * 100.0, // Random token IDs between 0 and 100
25    );
26
27    println!("Input shape: {:?}", input.shape());
28
29    // Forward pass to get hidden states
30    let hidden_states = model.forward(&input)?;
31
32    println!("Hidden states shape: {:?}", hidden_states.shape());
33
34    // Calculate logits for next-token prediction
35    let logits = model.logits(&input)?;
36
37    println!("Logits shape: {:?}", logits.shape());
38    println!("Vocabulary size: {}", logits.shape()[2]);
39
40    // Let's create a GPT-2 Small model
41    println!("\nCreating a GPT-2 Small model...");
42
43    let gpt2_small = GPTModel::<f32>::gpt2_small()?;
44
45    // Create dummy input for a longer sequence
46    let small_input = Array::from_shape_fn(
47        IxDyn(&[1, 32]),
48        |_| rand::random::<f32>() * 1000.0, // Random token IDs
49    );
50
51    println!("GPT-2 Small input shape: {:?}", small_input.shape());
52
53    // Forward pass
54    let small_hidden_states = gpt2_small.forward(&small_input)?;
55
56    println!(
57        "GPT-2 Small hidden states shape: {:?}",
58        small_hidden_states.shape()
59    );
60    println!(
61        "GPT-2 Small hidden dimension: {}",
62        small_hidden_states.shape()[2]
63    );
64
65    // For text generation (logits for next token prediction)
66    let small_logits = gpt2_small.logits(&small_input)?;
67    println!("GPT-2 Small logits shape: {:?}", small_logits.shape());
68    println!("GPT-2 Small vocabulary size: {}", small_logits.shape()[2]);
69
70    println!("\nGPT example completed successfully!");
71
72    Ok(())
73}
Source

pub fn gpt2_small() -> Result<Self>

Create a GPT-2 Small model

Examples found in repository?
examples/gpt_example.rs (line 43)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("GPT Model Example");
7
8    // Create a small GPT model for demonstration
9    println!("Creating a small GPT model...");
10
11    let config = GPTConfig::custom(
12        10000, // vocab_size
13        128,   // hidden_size
14        2,     // num_hidden_layers
15        2,     // num_attention_heads
16    );
17
18    let model = GPTModel::<f32>::new(config)?;
19
20    // Create dummy input (batch_size=2, seq_len=16)
21    // Input tensor contains token IDs
22    let input = Array::from_shape_fn(
23        IxDyn(&[2, 16]),
24        |_| rand::random::<f32>() * 100.0, // Random token IDs between 0 and 100
25    );
26
27    println!("Input shape: {:?}", input.shape());
28
29    // Forward pass to get hidden states
30    let hidden_states = model.forward(&input)?;
31
32    println!("Hidden states shape: {:?}", hidden_states.shape());
33
34    // Calculate logits for next-token prediction
35    let logits = model.logits(&input)?;
36
37    println!("Logits shape: {:?}", logits.shape());
38    println!("Vocabulary size: {}", logits.shape()[2]);
39
40    // Let's create a GPT-2 Small model
41    println!("\nCreating a GPT-2 Small model...");
42
43    let gpt2_small = GPTModel::<f32>::gpt2_small()?;
44
45    // Create dummy input for a longer sequence
46    let small_input = Array::from_shape_fn(
47        IxDyn(&[1, 32]),
48        |_| rand::random::<f32>() * 1000.0, // Random token IDs
49    );
50
51    println!("GPT-2 Small input shape: {:?}", small_input.shape());
52
53    // Forward pass
54    let small_hidden_states = gpt2_small.forward(&small_input)?;
55
56    println!(
57        "GPT-2 Small hidden states shape: {:?}",
58        small_hidden_states.shape()
59    );
60    println!(
61        "GPT-2 Small hidden dimension: {}",
62        small_hidden_states.shape()[2]
63    );
64
65    // For text generation (logits for next token prediction)
66    let small_logits = gpt2_small.logits(&small_input)?;
67    println!("GPT-2 Small logits shape: {:?}", small_logits.shape());
68    println!("GPT-2 Small vocabulary size: {}", small_logits.shape()[2]);
69
70    println!("\nGPT example completed successfully!");
71
72    Ok(())
73}
Source

pub fn gpt2_medium() -> Result<Self>

Create a GPT-2 Medium model

Source

pub fn gpt2_large() -> Result<Self>

Create a GPT-2 Large model

Source

pub fn custom( vocab_size: usize, hidden_size: usize, num_hidden_layers: usize, num_attention_heads: usize, ) -> Result<Self>

Create a custom GPT model

Source

pub fn logits(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>

Calculate logits (prediction scores) for next tokens

Examples found in repository?
examples/gpt_example.rs (line 35)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("GPT Model Example");
7
8    // Create a small GPT model for demonstration
9    println!("Creating a small GPT model...");
10
11    let config = GPTConfig::custom(
12        10000, // vocab_size
13        128,   // hidden_size
14        2,     // num_hidden_layers
15        2,     // num_attention_heads
16    );
17
18    let model = GPTModel::<f32>::new(config)?;
19
20    // Create dummy input (batch_size=2, seq_len=16)
21    // Input tensor contains token IDs
22    let input = Array::from_shape_fn(
23        IxDyn(&[2, 16]),
24        |_| rand::random::<f32>() * 100.0, // Random token IDs between 0 and 100
25    );
26
27    println!("Input shape: {:?}", input.shape());
28
29    // Forward pass to get hidden states
30    let hidden_states = model.forward(&input)?;
31
32    println!("Hidden states shape: {:?}", hidden_states.shape());
33
34    // Calculate logits for next-token prediction
35    let logits = model.logits(&input)?;
36
37    println!("Logits shape: {:?}", logits.shape());
38    println!("Vocabulary size: {}", logits.shape()[2]);
39
40    // Let's create a GPT-2 Small model
41    println!("\nCreating a GPT-2 Small model...");
42
43    let gpt2_small = GPTModel::<f32>::gpt2_small()?;
44
45    // Create dummy input for a longer sequence
46    let small_input = Array::from_shape_fn(
47        IxDyn(&[1, 32]),
48        |_| rand::random::<f32>() * 1000.0, // Random token IDs
49    );
50
51    println!("GPT-2 Small input shape: {:?}", small_input.shape());
52
53    // Forward pass
54    let small_hidden_states = gpt2_small.forward(&small_input)?;
55
56    println!(
57        "GPT-2 Small hidden states shape: {:?}",
58        small_hidden_states.shape()
59    );
60    println!(
61        "GPT-2 Small hidden dimension: {}",
62        small_hidden_states.shape()[2]
63    );
64
65    // For text generation (logits for next token prediction)
66    let small_logits = gpt2_small.logits(&small_input)?;
67    println!("GPT-2 Small logits shape: {:?}", small_logits.shape());
68    println!("GPT-2 Small vocabulary size: {}", small_logits.shape()[2]);
69
70    println!("\nGPT example completed successfully!");
71
72    Ok(())
73}

Trait Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync> Layer<F> for GPTModel<F>

Source§

fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>

Forward pass of the layer Read more
Source§

fn backward( &self, _input: &Array<F, IxDyn>, grad_output: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>

Backward pass of the layer to compute gradients Read more
Source§

fn update(&mut self, learning_rate: F) -> Result<()>

Update the layer parameters with the given gradients Read more
Source§

fn as_any(&self) -> &dyn Any

Get the layer as a dyn Any for downcasting Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any

Get the layer as a mutable dyn Any for downcasting Read more
Source§

fn params(&self) -> Vec<Array<F, IxDyn>>

Get the parameters of the layer Read more
Source§

fn gradients(&self) -> Vec<Array<F, IxDyn>>

Get the gradients of the layer parameters Read more
Source§

fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>

Set the gradients of the layer parameters Read more
Source§

fn set_params(&mut self, _params: &[Array<F, IxDyn>]) -> Result<()>

Set the parameters of the layer Read more
Source§

fn set_training(&mut self, _training: bool)

Set the layer to training mode (true) or evaluation mode (false) Read more
Source§

fn is_training(&self) -> bool

Get the current training mode Read more
Source§

fn layer_type(&self) -> &str

Get the type of the layer (e.g., “Dense”, “Conv2D”) Read more
Source§

fn parameter_count(&self) -> usize

Get the number of trainable parameters in this layer Read more
Source§

fn layer_description(&self) -> String

Get a detailed description of this layer Read more

Auto Trait Implementations§

§

impl<F> Freeze for GPTModel<F>
where F: Freeze,

§

impl<F> !RefUnwindSafe for GPTModel<F>

§

impl<F> !Send for GPTModel<F>

§

impl<F> !Sync for GPTModel<F>

§

impl<F> Unpin for GPTModel<F>
where F: Unpin,

§

impl<F> !UnwindSafe for GPTModel<F>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V