Struct EfficientNet

Source
pub struct EfficientNet<F: Float + Debug + ScalarOperand + Send + Sync> { /* private fields */ }
Expand description

EfficientNet implementation

Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync> EfficientNet<F>

Source

pub fn new(config: EfficientNetConfig) -> Result<Self>

Create a new EfficientNet model

Examples found in repository?
examples/efficientnet_example.rs (line 64)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("EfficientNet Example");
7
8    // Create EfficientNet-B0 model for image classification
9    let input_channels = 3; // RGB images
10    let num_classes = 1000; // ImageNet classes
11
12    println!(
13        "Creating EfficientNet-B0 model with {} input channels and {} output classes",
14        input_channels, num_classes
15    );
16
17    // Create model
18    let model = EfficientNet::<f32>::efficientnet_b0(input_channels, num_classes)?;
19
20    // Create dummy input (batch_size=1, channels=3, height=224, width=224)
21    let input = Array::from_shape_fn(IxDyn(&[1, input_channels, 224, 224]), |_| {
22        rand::random::<f32>()
23    });
24
25    println!("Input shape: {:?}", input.shape());
26
27    // Forward pass
28    let output = model.forward(&input)?;
29
30    println!("Output shape: {:?}", output.shape());
31    println!("Output contains logits for {} classes", output.shape()[1]);
32
33    // Create EfficientNet-B3 model (larger model)
34    println!("\nCreating EfficientNet-B3 model...");
35
36    let model_b3 = EfficientNet::<f32>::efficientnet_b3(input_channels, num_classes)?;
37
38    // Create dummy input with higher resolution for B3 (300x300)
39    let input_b3 = Array::from_shape_fn(IxDyn(&[1, input_channels, 300, 300]), |_| {
40        rand::random::<f32>()
41    });
42
43    println!("Input shape for B3: {:?}", input_b3.shape());
44
45    // Forward pass
46    let output_b3 = model_b3.forward(&input_b3)?;
47
48    println!("Output shape for B3: {:?}", output_b3.shape());
49
50    // Create a custom EfficientNet model for smaller images
51    println!("\nCreating a custom EfficientNet model for smaller images...");
52
53    // Create simplified config with fewer stages
54    let mut custom_config = EfficientNetConfig::efficientnet_b0(input_channels, 10); // 10 classes
55
56    // Simplify by keeping only first 4 stages
57    custom_config.stages.truncate(4);
58
59    // Scale down the model
60    custom_config.width_coefficient = 0.5;
61    custom_config.depth_coefficient = 0.5;
62    custom_config.resolution = 32; // For CIFAR-10 size images
63
64    let custom_model = EfficientNet::<f32>::new(custom_config)?;
65
66    // Create dummy input for small images (32x32)
67    let small_input = Array::from_shape_fn(IxDyn(&[1, input_channels, 32, 32]), |_| {
68        rand::random::<f32>()
69    });
70
71    println!("Custom input shape: {:?}", small_input.shape());
72
73    // Forward pass
74    let custom_output = custom_model.forward(&small_input)?;
75
76    println!("Custom output shape: {:?}", custom_output.shape());
77    println!(
78        "Custom model produces logits for {} classes",
79        custom_output.shape()[1]
80    );
81
82    println!("\nEfficientNet example completed successfully!");
83
84    Ok(())
85}
Source

pub fn efficientnet_b0( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B0 model

Examples found in repository?
examples/efficientnet_example.rs (line 18)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("EfficientNet Example");
7
8    // Create EfficientNet-B0 model for image classification
9    let input_channels = 3; // RGB images
10    let num_classes = 1000; // ImageNet classes
11
12    println!(
13        "Creating EfficientNet-B0 model with {} input channels and {} output classes",
14        input_channels, num_classes
15    );
16
17    // Create model
18    let model = EfficientNet::<f32>::efficientnet_b0(input_channels, num_classes)?;
19
20    // Create dummy input (batch_size=1, channels=3, height=224, width=224)
21    let input = Array::from_shape_fn(IxDyn(&[1, input_channels, 224, 224]), |_| {
22        rand::random::<f32>()
23    });
24
25    println!("Input shape: {:?}", input.shape());
26
27    // Forward pass
28    let output = model.forward(&input)?;
29
30    println!("Output shape: {:?}", output.shape());
31    println!("Output contains logits for {} classes", output.shape()[1]);
32
33    // Create EfficientNet-B3 model (larger model)
34    println!("\nCreating EfficientNet-B3 model...");
35
36    let model_b3 = EfficientNet::<f32>::efficientnet_b3(input_channels, num_classes)?;
37
38    // Create dummy input with higher resolution for B3 (300x300)
39    let input_b3 = Array::from_shape_fn(IxDyn(&[1, input_channels, 300, 300]), |_| {
40        rand::random::<f32>()
41    });
42
43    println!("Input shape for B3: {:?}", input_b3.shape());
44
45    // Forward pass
46    let output_b3 = model_b3.forward(&input_b3)?;
47
48    println!("Output shape for B3: {:?}", output_b3.shape());
49
50    // Create a custom EfficientNet model for smaller images
51    println!("\nCreating a custom EfficientNet model for smaller images...");
52
53    // Create simplified config with fewer stages
54    let mut custom_config = EfficientNetConfig::efficientnet_b0(input_channels, 10); // 10 classes
55
56    // Simplify by keeping only first 4 stages
57    custom_config.stages.truncate(4);
58
59    // Scale down the model
60    custom_config.width_coefficient = 0.5;
61    custom_config.depth_coefficient = 0.5;
62    custom_config.resolution = 32; // For CIFAR-10 size images
63
64    let custom_model = EfficientNet::<f32>::new(custom_config)?;
65
66    // Create dummy input for small images (32x32)
67    let small_input = Array::from_shape_fn(IxDyn(&[1, input_channels, 32, 32]), |_| {
68        rand::random::<f32>()
69    });
70
71    println!("Custom input shape: {:?}", small_input.shape());
72
73    // Forward pass
74    let custom_output = custom_model.forward(&small_input)?;
75
76    println!("Custom output shape: {:?}", custom_output.shape());
77    println!(
78        "Custom model produces logits for {} classes",
79        custom_output.shape()[1]
80    );
81
82    println!("\nEfficientNet example completed successfully!");
83
84    Ok(())
85}
Source

pub fn efficientnet_b1( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B1 model

Source

pub fn efficientnet_b2( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B2 model

Source

pub fn efficientnet_b3( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B3 model

Examples found in repository?
examples/efficientnet_example.rs (line 36)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("EfficientNet Example");
7
8    // Create EfficientNet-B0 model for image classification
9    let input_channels = 3; // RGB images
10    let num_classes = 1000; // ImageNet classes
11
12    println!(
13        "Creating EfficientNet-B0 model with {} input channels and {} output classes",
14        input_channels, num_classes
15    );
16
17    // Create model
18    let model = EfficientNet::<f32>::efficientnet_b0(input_channels, num_classes)?;
19
20    // Create dummy input (batch_size=1, channels=3, height=224, width=224)
21    let input = Array::from_shape_fn(IxDyn(&[1, input_channels, 224, 224]), |_| {
22        rand::random::<f32>()
23    });
24
25    println!("Input shape: {:?}", input.shape());
26
27    // Forward pass
28    let output = model.forward(&input)?;
29
30    println!("Output shape: {:?}", output.shape());
31    println!("Output contains logits for {} classes", output.shape()[1]);
32
33    // Create EfficientNet-B3 model (larger model)
34    println!("\nCreating EfficientNet-B3 model...");
35
36    let model_b3 = EfficientNet::<f32>::efficientnet_b3(input_channels, num_classes)?;
37
38    // Create dummy input with higher resolution for B3 (300x300)
39    let input_b3 = Array::from_shape_fn(IxDyn(&[1, input_channels, 300, 300]), |_| {
40        rand::random::<f32>()
41    });
42
43    println!("Input shape for B3: {:?}", input_b3.shape());
44
45    // Forward pass
46    let output_b3 = model_b3.forward(&input_b3)?;
47
48    println!("Output shape for B3: {:?}", output_b3.shape());
49
50    // Create a custom EfficientNet model for smaller images
51    println!("\nCreating a custom EfficientNet model for smaller images...");
52
53    // Create simplified config with fewer stages
54    let mut custom_config = EfficientNetConfig::efficientnet_b0(input_channels, 10); // 10 classes
55
56    // Simplify by keeping only first 4 stages
57    custom_config.stages.truncate(4);
58
59    // Scale down the model
60    custom_config.width_coefficient = 0.5;
61    custom_config.depth_coefficient = 0.5;
62    custom_config.resolution = 32; // For CIFAR-10 size images
63
64    let custom_model = EfficientNet::<f32>::new(custom_config)?;
65
66    // Create dummy input for small images (32x32)
67    let small_input = Array::from_shape_fn(IxDyn(&[1, input_channels, 32, 32]), |_| {
68        rand::random::<f32>()
69    });
70
71    println!("Custom input shape: {:?}", small_input.shape());
72
73    // Forward pass
74    let custom_output = custom_model.forward(&small_input)?;
75
76    println!("Custom output shape: {:?}", custom_output.shape());
77    println!(
78        "Custom model produces logits for {} classes",
79        custom_output.shape()[1]
80    );
81
82    println!("\nEfficientNet example completed successfully!");
83
84    Ok(())
85}
Source

pub fn efficientnet_b4( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B4 model

Source

pub fn efficientnet_b5( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B5 model

Source

pub fn efficientnet_b6( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B6 model

Source

pub fn efficientnet_b7( input_channels: usize, num_classes: usize, ) -> Result<Self>

Create EfficientNet-B7 model

Trait Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync> Layer<F> for EfficientNet<F>

Source§

fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>

Forward pass of the layer Read more
Source§

fn backward( &self, _input: &Array<F, IxDyn>, grad_output: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>

Backward pass of the layer to compute gradients Read more
Source§

fn update(&mut self, learning_rate: F) -> Result<()>

Update the layer parameters with the given gradients Read more
Source§

fn as_any(&self) -> &dyn Any

Get the layer as a dyn Any for downcasting Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any

Get the layer as a mutable dyn Any for downcasting Read more
Source§

fn params(&self) -> Vec<Array<F, IxDyn>>

Get the parameters of the layer Read more
Source§

fn gradients(&self) -> Vec<Array<F, IxDyn>>

Get the gradients of the layer parameters Read more
Source§

fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>

Set the gradients of the layer parameters Read more
Source§

fn set_params(&mut self, _params: &[Array<F, IxDyn>]) -> Result<()>

Set the parameters of the layer Read more
Source§

fn set_training(&mut self, _training: bool)

Set the layer to training mode (true) or evaluation mode (false) Read more
Source§

fn is_training(&self) -> bool

Get the current training mode Read more
Source§

fn layer_type(&self) -> &str

Get the type of the layer (e.g., “Dense”, “Conv2D”) Read more
Source§

fn parameter_count(&self) -> usize

Get the number of trainable parameters in this layer Read more
Source§

fn layer_description(&self) -> String

Get a detailed description of this layer Read more

Auto Trait Implementations§

§

impl<F> !Freeze for EfficientNet<F>

§

impl<F> !RefUnwindSafe for EfficientNet<F>

§

impl<F> Send for EfficientNet<F>

§

impl<F> Sync for EfficientNet<F>

§

impl<F> Unpin for EfficientNet<F>
where F: Unpin,

§

impl<F> !UnwindSafe for EfficientNet<F>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V