Struct BertModel

Source
pub struct BertModel<F: Float + Debug + ScalarOperand + Send + Sync> { /* private fields */ }
Expand description

BERT model implementation

Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync> BertModel<F>

Source

pub fn new(config: BertConfig) -> Result<Self>

Create a new BERT model

Examples found in repository?
examples/bert_example.rs (line 18)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("BERT Model Example");
7
8    // Create a small BERT model for demonstration
9    println!("Creating a small BERT model...");
10
11    let config = BertConfig::custom(
12        10000, // vocab_size
13        128,   // hidden_size
14        2,     // num_hidden_layers
15        2,     // num_attention_heads
16    );
17
18    let model = BertModel::<f32>::new(config)?;
19
20    // Create dummy input (batch_size=2, seq_len=16)
21    // Input tensor contains token IDs
22    let input = Array::from_shape_fn(
23        IxDyn(&[2, 16]),
24        |_| rand::random::<f32>() * 100.0, // Random token IDs between 0 and 100
25    );
26
27    println!("Input shape: {:?}", input.shape());
28
29    // Get sequence output (hidden states)
30    let sequence_output = model.forward(&input)?;
31
32    println!("Sequence output shape: {:?}", sequence_output.shape());
33
34    // Get pooled output (for classification tasks)
35    let pooled_output = model.get_pooled_output(&input)?;
36
37    println!("Pooled output shape: {:?}", pooled_output.shape());
38
39    // Let's create a BERT-Base model
40    println!("\nCreating a BERT-Base model...");
41
42    let bert_base = BertModel::<f32>::bert_base_uncased()?;
43
44    // Create dummy input for a longer sequence
45    let base_input = Array::from_shape_fn(
46        IxDyn(&[1, 64]),
47        |_| rand::random::<f32>() * 1000.0, // Random token IDs
48    );
49
50    println!("BERT-Base input shape: {:?}", base_input.shape());
51
52    // Forward pass to get pooled output
53    let base_pooled_output = bert_base.get_pooled_output(&base_input)?;
54
55    println!(
56        "BERT-Base pooled output shape: {:?}",
57        base_pooled_output.shape()
58    );
59    println!(
60        "BERT-Base hidden dimension: {}",
61        base_pooled_output.shape()[1]
62    );
63
64    println!("\nBERT example completed successfully!");
65
66    Ok(())
67}
Source

pub fn bert_base_uncased() -> Result<Self>

Create a BERT-Base-Uncased model

Examples found in repository?
examples/bert_example.rs (line 42)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("BERT Model Example");
7
8    // Create a small BERT model for demonstration
9    println!("Creating a small BERT model...");
10
11    let config = BertConfig::custom(
12        10000, // vocab_size
13        128,   // hidden_size
14        2,     // num_hidden_layers
15        2,     // num_attention_heads
16    );
17
18    let model = BertModel::<f32>::new(config)?;
19
20    // Create dummy input (batch_size=2, seq_len=16)
21    // Input tensor contains token IDs
22    let input = Array::from_shape_fn(
23        IxDyn(&[2, 16]),
24        |_| rand::random::<f32>() * 100.0, // Random token IDs between 0 and 100
25    );
26
27    println!("Input shape: {:?}", input.shape());
28
29    // Get sequence output (hidden states)
30    let sequence_output = model.forward(&input)?;
31
32    println!("Sequence output shape: {:?}", sequence_output.shape());
33
34    // Get pooled output (for classification tasks)
35    let pooled_output = model.get_pooled_output(&input)?;
36
37    println!("Pooled output shape: {:?}", pooled_output.shape());
38
39    // Let's create a BERT-Base model
40    println!("\nCreating a BERT-Base model...");
41
42    let bert_base = BertModel::<f32>::bert_base_uncased()?;
43
44    // Create dummy input for a longer sequence
45    let base_input = Array::from_shape_fn(
46        IxDyn(&[1, 64]),
47        |_| rand::random::<f32>() * 1000.0, // Random token IDs
48    );
49
50    println!("BERT-Base input shape: {:?}", base_input.shape());
51
52    // Forward pass to get pooled output
53    let base_pooled_output = bert_base.get_pooled_output(&base_input)?;
54
55    println!(
56        "BERT-Base pooled output shape: {:?}",
57        base_pooled_output.shape()
58    );
59    println!(
60        "BERT-Base hidden dimension: {}",
61        base_pooled_output.shape()[1]
62    );
63
64    println!("\nBERT example completed successfully!");
65
66    Ok(())
67}
Source

pub fn bert_large_uncased() -> Result<Self>

Create a BERT-Large-Uncased model

Source

pub fn custom( vocab_size: usize, hidden_size: usize, num_hidden_layers: usize, num_attention_heads: usize, ) -> Result<Self>

Create a custom BERT model

Source

pub fn get_sequence_output( &self, input: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>

Get sequence output (last layer hidden states)

Source

pub fn get_pooled_output( &self, input: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>

Get pooled output (for classification tasks)

Examples found in repository?
examples/bert_example.rs (line 35)
5fn main() -> Result<(), Box<dyn std::error::Error>> {
6    println!("BERT Model Example");
7
8    // Create a small BERT model for demonstration
9    println!("Creating a small BERT model...");
10
11    let config = BertConfig::custom(
12        10000, // vocab_size
13        128,   // hidden_size
14        2,     // num_hidden_layers
15        2,     // num_attention_heads
16    );
17
18    let model = BertModel::<f32>::new(config)?;
19
20    // Create dummy input (batch_size=2, seq_len=16)
21    // Input tensor contains token IDs
22    let input = Array::from_shape_fn(
23        IxDyn(&[2, 16]),
24        |_| rand::random::<f32>() * 100.0, // Random token IDs between 0 and 100
25    );
26
27    println!("Input shape: {:?}", input.shape());
28
29    // Get sequence output (hidden states)
30    let sequence_output = model.forward(&input)?;
31
32    println!("Sequence output shape: {:?}", sequence_output.shape());
33
34    // Get pooled output (for classification tasks)
35    let pooled_output = model.get_pooled_output(&input)?;
36
37    println!("Pooled output shape: {:?}", pooled_output.shape());
38
39    // Let's create a BERT-Base model
40    println!("\nCreating a BERT-Base model...");
41
42    let bert_base = BertModel::<f32>::bert_base_uncased()?;
43
44    // Create dummy input for a longer sequence
45    let base_input = Array::from_shape_fn(
46        IxDyn(&[1, 64]),
47        |_| rand::random::<f32>() * 1000.0, // Random token IDs
48    );
49
50    println!("BERT-Base input shape: {:?}", base_input.shape());
51
52    // Forward pass to get pooled output
53    let base_pooled_output = bert_base.get_pooled_output(&base_input)?;
54
55    println!(
56        "BERT-Base pooled output shape: {:?}",
57        base_pooled_output.shape()
58    );
59    println!(
60        "BERT-Base hidden dimension: {}",
61        base_pooled_output.shape()[1]
62    );
63
64    println!("\nBERT example completed successfully!");
65
66    Ok(())
67}

Trait Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync> Layer<F> for BertModel<F>

Source§

fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>

Forward pass of the layer Read more
Source§

fn backward( &self, _input: &Array<F, IxDyn>, grad_output: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>

Backward pass of the layer to compute gradients Read more
Source§

fn update(&mut self, learning_rate: F) -> Result<()>

Update the layer parameters with the given gradients Read more
Source§

fn as_any(&self) -> &dyn Any

Get the layer as a dyn Any for downcasting Read more
Source§

fn as_any_mut(&mut self) -> &mut dyn Any

Get the layer as a mutable dyn Any for downcasting Read more
Source§

fn params(&self) -> Vec<Array<F, IxDyn>>

Get the parameters of the layer Read more
Source§

fn gradients(&self) -> Vec<Array<F, IxDyn>>

Get the gradients of the layer parameters Read more
Source§

fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>

Set the gradients of the layer parameters Read more
Source§

fn set_params(&mut self, _params: &[Array<F, IxDyn>]) -> Result<()>

Set the parameters of the layer Read more
Source§

fn set_training(&mut self, _training: bool)

Set the layer to training mode (true) or evaluation mode (false) Read more
Source§

fn is_training(&self) -> bool

Get the current training mode Read more
Source§

fn layer_type(&self) -> &str

Get the type of the layer (e.g., “Dense”, “Conv2D”) Read more
Source§

fn parameter_count(&self) -> usize

Get the number of trainable parameters in this layer Read more
Source§

fn layer_description(&self) -> String

Get a detailed description of this layer Read more

Auto Trait Implementations§

§

impl<F> !Freeze for BertModel<F>

§

impl<F> !RefUnwindSafe for BertModel<F>

§

impl<F> !Send for BertModel<F>

§

impl<F> !Sync for BertModel<F>

§

impl<F> Unpin for BertModel<F>
where F: Unpin,

§

impl<F> !UnwindSafe for BertModel<F>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V