pub struct Dropout<F: Float + Debug + Send + Sync> { /* private fields */ }
Expand description
Dropout layer
During training, randomly sets input elements to zero with probability p
.
During inference, scales the output by 1/(1-p) to maintain the expected value.
Implementations§
Source§impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Dropout<F>
impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Dropout<F>
Sourcepub fn new<R: Rng + 'static + Clone + Send + Sync>(
p: f64,
rng: &mut R,
) -> Result<Self>
pub fn new<R: Rng + 'static + Clone + Send + Sync>( p: f64, rng: &mut R, ) -> Result<Self>
Create a new dropout layer
§Arguments
p
- Dropout probability (0.0 to 1.0)rng
- Random number generator
Sourcepub fn set_training(&mut self, training: bool)
pub fn set_training(&mut self, training: bool)
Set the training mode In training mode, elements are randomly dropped. In inference mode, all elements are kept but scaled.
Sourcepub fn is_training(&self) -> bool
pub fn is_training(&self) -> bool
Get the training mode
Trait Implementations§
Source§impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Layer<F> for Dropout<F>
impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Layer<F> for Dropout<F>
Source§fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>
fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>
Forward pass of the layer Read more
Source§fn backward(
&self,
_input: &Array<F, IxDyn>,
grad_output: &Array<F, IxDyn>,
) -> Result<Array<F, IxDyn>>
fn backward( &self, _input: &Array<F, IxDyn>, grad_output: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>
Backward pass of the layer to compute gradients Read more
Source§fn update(&mut self, _learningrate: F) -> Result<()>
fn update(&mut self, _learningrate: F) -> Result<()>
Update the layer parameters with the given learning rate
Source§fn as_any_mut(&mut self) -> &mut dyn Any
fn as_any_mut(&mut self) -> &mut dyn Any
Get the layer as a mutable dyn Any for downcasting
Source§fn set_training(&mut self, training: bool)
fn set_training(&mut self, training: bool)
Set the layer to training mode (true) or evaluation mode (false)
Source§fn is_training(&self) -> bool
fn is_training(&self) -> bool
Get the current training mode
Source§fn layer_type(&self) -> &str
fn layer_type(&self) -> &str
Get the type of the layer (e.g., “Dense”, “Conv2D”)
Source§fn parameter_count(&self) -> usize
fn parameter_count(&self) -> usize
Get the number of trainable parameters in this layer
Source§fn layer_description(&self) -> String
fn layer_description(&self) -> String
Get a detailed description of this layer
Source§fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>
fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>
Set the gradients of the layer parameters
impl<F: Float + Debug + Send + Sync> Send for Dropout<F>
impl<F: Float + Debug + Send + Sync> Sync for Dropout<F>
Auto Trait Implementations§
impl<F> Freeze for Dropout<F>where
F: Freeze,
impl<F> RefUnwindSafe for Dropout<F>where
F: RefUnwindSafe,
impl<F> Unpin for Dropout<F>where
F: Unpin,
impl<F> UnwindSafe for Dropout<F>where
F: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more