Dense

Struct Dense 

Source
pub struct Dense<F: Float + Debug + Send + Sync> { /* private fields */ }
Expand description

Dense (fully connected) layer for neural networks.

A dense layer performs the operation: y = activation(W * x + b), where W is the weight matrix, x is the input vector, b is the bias vector, and activation is the activation function.

Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Dense<F>

Source

pub fn new<R: Rng + RngCore>( input_dim: usize, output_dim: usize, activation_name: Option<&str>, rng: &mut R, ) -> Result<Self>

Create a new dense layer.

§Arguments
  • input_dim - Number of input features
  • output_dim - Number of output features
  • activation_name - Optional activation function name
  • rng - Random number generator for weight initialization
Examples found in repository?
examples/improved_xor.rs (line 17)
14    fn new() -> Result<Self> {
15        let mut rng = SmallRng::from_seed([42; 32]);
16        // Create two layers: 2 inputs -> 5 hidden -> 1 output
17        let hidden_layer = Dense::new(2, 5, Some("relu"), &mut rng)?;
18        let output_layer = Dense::new(5, 1, None, &mut rng)?;
19        Ok(Self {
20            hidden_layer,
21            output_layer,
22        })
23    }
More examples
Hide additional examples
examples/manual_xor.rs (line 22)
9fn main() -> Result<()> {
10    println!("Manual XOR Neural Network Example");
11    // Create a simple dataset for XOR problem
12    let inputs = Array::from_shape_vec(
13        IxDyn(&[4, 2]),
14        vec![0.0f32, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0],
15    )?;
16    let targets = Array::from_shape_vec(IxDyn(&[4, 1]), vec![0.0f32, 1.0, 1.0, 0.0])?;
17    println!("XOR problem dataset:");
18    println!("Inputs:\n{inputs:?}");
19    println!("Targets:\n{targets:?}");
20    // Create neural network layers
21    let mut rng = SmallRng::from_seed([42; 32]);
22    let mut hidden_layer = Dense::new(2, 4, Some("relu"), &mut rng)?;
23    let mut output_layer = Dense::new(4, 1, None, &mut rng)?;
24    // Create loss function
25    let loss_fn = MeanSquaredError::new();
26    // Training parameters
27    let learning_rate = 0.5f32;
28    let num_epochs = 10000;
29    println!("\nTraining for {num_epochs} epochs");
30    for epoch in 0..num_epochs {
31        // Forward pass through the network
32        let hidden_output = hidden_layer.forward(&inputs)?;
33        let final_output = output_layer.forward(&hidden_output)?;
34        // Compute loss
35        let loss = loss_fn.forward(&final_output, &targets)?;
36        if epoch % 500 == 0 || epoch == num_epochs - 1 {
37            println!("Epoch {}/{num_epochs}: loss = {loss:.6}", epoch + 1);
38        }
39        // Backward pass
40        let output_grad = loss_fn.backward(&final_output, &targets)?;
41        let hidden_grad = output_layer.backward(&hidden_output, &output_grad)?;
42        let _input_grad = hidden_layer.backward(&inputs, &hidden_grad)?;
43        // Update parameters
44        hidden_layer.update(learning_rate)?;
45        output_layer.update(learning_rate)?;
46    }
47    // Evaluate the model
48    println!("\nEvaluation:");
49    let hidden_output = hidden_layer.forward(&inputs)?;
50    let final_output = output_layer.forward(&hidden_output)?;
51    println!("Predictions:\n{final_output:.3?}");
52    // Test with individual inputs
53    println!("\nTesting with specific inputs:");
54    let test_cases = vec![
55        (0.0f32, 0.0f32),
56        (0.0f32, 1.0f32),
57        (1.0f32, 0.0f32),
58        (1.0f32, 1.0f32),
59    ];
60    for (x1, x2) in test_cases {
61        let test_input = Array::from_shape_vec(IxDyn(&[1, 2]), vec![x1, x2])?;
62        let hidden_output = hidden_layer.forward(&test_input)?;
63        let prediction = output_layer.forward(&hidden_output)?;
64        let expected = if (x1 == 1.0 && x2 == 0.0) || (x1 == 0.0 && x2 == 1.0) {
65            1.0
66        } else {
67            0.0
68        };
69        println!(
70            "Input: [{x1:.1}, {x2:.1}], Predicted: {:.3}, Expected: {expected:.1}",
71            prediction[[0, 0]]
72        );
73    }
74    Ok(())
75}
Source

pub fn input_dim(&self) -> usize

Get the input dimension

Source

pub fn output_dim(&self) -> usize

Get the output dimension

Trait Implementations§

Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Clone for Dense<F>

Source§

fn clone(&self) -> Self

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Debug for Dense<F>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> Layer<F> for Dense<F>

Source§

fn forward(&self, input: &Array<F, IxDyn>) -> Result<Array<F, IxDyn>>

Forward pass of the layer Read more
Source§

fn backward( &self, _input: &Array<F, IxDyn>, grad_output: &Array<F, IxDyn>, ) -> Result<Array<F, IxDyn>>

Backward pass of the layer to compute gradients Read more
Source§

fn update(&mut self, learningrate: F) -> Result<()>

Update the layer parameters with the given learning rate
Source§

fn as_any(&self) -> &dyn Any

Get the layer as a dyn Any for downcasting
Source§

fn as_any_mut(&mut self) -> &mut dyn Any

Get the layer as a mutable dyn Any for downcasting
Source§

fn layer_type(&self) -> &str

Get the type of the layer (e.g., “Dense”, “Conv2D”)
Source§

fn parameter_count(&self) -> usize

Get the number of trainable parameters in this layer
Source§

fn layer_description(&self) -> String

Get a detailed description of this layer
Source§

fn params(&self) -> Vec<Array<F, IxDyn>>

Get the parameters of the layer
Source§

fn gradients(&self) -> Vec<Array<F, IxDyn>>

Get the gradients of the layer parameters
Source§

fn set_gradients(&mut self, _gradients: &[Array<F, IxDyn>]) -> Result<()>

Set the gradients of the layer parameters
Source§

fn set_params(&mut self, _params: &[Array<F, IxDyn>]) -> Result<()>

Set the parameters of the layer
Source§

fn set_training(&mut self, _training: bool)

Set the layer to training mode (true) or evaluation mode (false)
Source§

fn is_training(&self) -> bool

Get the current training mode
Source§

fn inputshape(&self) -> Option<Vec<usize>>

Get the input shape if known
Source§

fn outputshape(&self) -> Option<Vec<usize>>

Get the output shape if known
Source§

fn name(&self) -> Option<&str>

Get the name of the layer if set
Source§

impl<F: Float + Debug + ScalarOperand + Send + Sync + 'static> ParamLayer<F> for Dense<F>

Source§

fn get_parameters(&self) -> Vec<Array<F, IxDyn>>

Get the parameters of the layer as a vector of arrays
Source§

fn get_gradients(&self) -> Vec<Array<F, IxDyn>>

Get the gradients of the parameters
Source§

fn set_parameters(&mut self, params: Vec<Array<F, IxDyn>>) -> Result<()>

Set the parameters
Source§

impl<F: Float + Debug + Send + Sync> Send for Dense<F>

Source§

impl<F: Float + Debug + Send + Sync> Sync for Dense<F>

Auto Trait Implementations§

§

impl<F> !Freeze for Dense<F>

§

impl<F> !RefUnwindSafe for Dense<F>

§

impl<F> Unpin for Dense<F>

§

impl<F> !UnwindSafe for Dense<F>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V