DataChunk

Struct DataChunk 

Source
pub struct DataChunk {
    pub data: Array2<f64>,
    pub target: Option<Array1<f64>>,
    pub chunk_index: usize,
    pub sample_indices: Vec<usize>,
    pub is_last: bool,
}
Expand description

A chunk of data from a streaming dataset

Fields§

§data: Array2<f64>

Feature data for this chunk

§target: Option<Array1<f64>>

Target values for this chunk (if available)

§chunk_index: usize

Chunk index in the stream

§sample_indices: Vec<usize>

Global sample indices for this chunk

§is_last: bool

Whether this is the last chunk in the stream

Implementations§

Source§

impl DataChunk

Source

pub fn n_samples(&self) -> usize

Number of samples in this chunk

Examples found in repository?
examples/datasets_streaming_demo.rs (line 77)
44fn demonstrate_basic_streaming() -> Result<(), Box<dyn std::error::Error>> {
45    println!("📊 BASIC STREAMING OPERATIONS");
46    println!("{}", "-".repeat(40));
47
48    // Configure streaming
49    let config = StreamConfig {
50        chunk_size: 1000,           // 1K samples per chunk
51        buffer_size: 3,             // Buffer 3 chunks
52        num_workers: 4,             // Use 4 worker threads
53        memory_limit_mb: Some(100), // Limit to 100MB
54        enable_compression: false,
55        enable_prefetch: true,
56        max_chunks: Some(10), // Process only 10 chunks for demo
57    };
58
59    println!("Streaming Configuration:");
60    println!("  Chunk size: {} samples", config.chunk_size);
61    println!("  Buffer size: {} chunks", config.buffer_size);
62    println!("  Workers: {}", config.num_workers);
63    println!("  Memory limit: {:?} MB", config.memory_limit_mb);
64    println!("  Max chunks: {:?}", config.max_chunks);
65
66    // Create streaming classification dataset
67    println!("\nStreaming synthetic classification data...");
68    let mut stream = stream_classification(100_000, 20, 5, config.clone())?;
69
70    let mut total_samples = 0;
71    let mut chunk_count = 0;
72    let mut class_distribution: HashMap<i32, usize> = HashMap::new();
73
74    let start_time = Instant::now();
75
76    while let Some(chunk) = stream.next_chunk()? {
77        total_samples += chunk.n_samples();
78        chunk_count += 1;
79
80        // Analyze this chunk
81        if let Some(target) = &chunk.target {
82            for &class in target.iter() {
83                *class_distribution.entry(class as i32).or_insert(0) += 1;
84            }
85        }
86
87        // Print progress
88        let stats = stream.stats();
89        if let Some(progress) = stats.progress_percent() {
90            println!(
91                "  Chunk {}: {} samples (Progress: {:.1}%, Buffer: {:.1}%)",
92                chunk.chunk_index + 1,
93                chunk.n_samples(),
94                progress,
95                stats.buffer_utilization()
96            );
97        } else {
98            println!(
99                "  Chunk {}: {} samples (Buffer: {:.1}%)",
100                chunk.chunk_index + 1,
101                chunk.n_samples(),
102                stats.buffer_utilization()
103            );
104        }
105
106        // Simulate processing time
107        std::thread::sleep(std::time::Duration::from_millis(50));
108
109        if chunk.is_last {
110            println!("  📋 Reached last chunk");
111            break;
112        }
113    }
114
115    let duration = start_time.elapsed();
116
117    println!("\nStreaming Results:");
118    println!("  Total chunks processed: {chunk_count}");
119    println!("  Total samples: {total_samples}");
120    println!("  Processing time: {:.2}s", duration.as_secs_f64());
121    println!(
122        "  Throughput: {:.1} samples/s",
123        total_samples as f64 / duration.as_secs_f64()
124    );
125    println!("  Class distribution: {class_distribution:?}");
126
127    println!();
128    Ok(())
129}
130
131#[allow(dead_code)]
132fn demonstrate_memory_efficient_processing() -> Result<(), Box<dyn std::error::Error>> {
133    println!("💾 MEMORY-EFFICIENT PROCESSING");
134    println!("{}", "-".repeat(40));
135
136    // Compare memory usage: streaming vs. in-memory
137    let datasetsize = 50_000;
138    let n_features = 50;
139
140    println!("Comparing memory usage for {datasetsize} samples with {n_features} features");
141
142    // In-memory approach (for comparison)
143    println!("\n1. In-memory approach:");
144    let start_mem = get_memory_usage();
145    let start_time = Instant::now();
146
147    let in_memorydataset = make_classification(datasetsize, n_features, 5, 2, 25, Some(42))?;
148    let (train, test) = train_test_split(&in_memorydataset, 0.2, Some(42))?;
149
150    let in_memory_time = start_time.elapsed();
151    let in_memory_mem = get_memory_usage() - start_mem;
152
153    println!("  Time: {:.2}s", in_memory_time.as_secs_f64());
154    println!("  Memory usage: ~{in_memory_mem:.1} MB");
155    println!("  Train samples: {}", train.n_samples());
156    println!("  Test samples: {}", test.n_samples());
157
158    // Streaming approach
159    println!("\n2. Streaming approach:");
160    let stream_start_time = Instant::now();
161    let stream_start_mem = get_memory_usage();
162
163    let config = StreamConfig {
164        chunk_size: 5_000, // Smaller chunks for memory efficiency
165        buffer_size: 2,    // Smaller buffer
166        num_workers: 2,
167        memory_limit_mb: Some(50),
168        ..Default::default()
169    };
170
171    let mut stream = stream_classification(datasetsize, n_features, 5, config)?;
172
173    let mut total_processed = 0;
174    let mut train_samples = 0;
175    let mut test_samples = 0;
176
177    while let Some(chunk) = stream.next_chunk()? {
178        total_processed += chunk.n_samples();
179
180        // Simulate train/test split on chunk level
181        let chunk_trainsize = (chunk.n_samples() as f64 * 0.8) as usize;
182        train_samples += chunk_trainsize;
183        test_samples += chunk.n_samples() - chunk_trainsize;
184
185        // Process chunk (simulate some computation)
186        let _mean = chunk.data.mean_axis(scirs2_core::ndarray::Axis(0));
187        let _std = chunk.data.std_axis(scirs2_core::ndarray::Axis(0), 0.0);
188
189        if chunk.is_last {
190            break;
191        }
192    }
193
194    let stream_time = stream_start_time.elapsed();
195    let stream_mem = get_memory_usage() - stream_start_mem;
196
197    println!("  Time: {:.2}s", stream_time.as_secs_f64());
198    println!("  Memory usage: ~{stream_mem:.1} MB");
199    println!("  Train samples: {train_samples}");
200    println!("  Test samples: {test_samples}");
201    println!("  Total processed: {total_processed}");
202
203    // Comparison
204    println!("\n3. Comparison:");
205    println!(
206        "  Memory savings: {:.1}x less memory",
207        in_memory_mem / stream_mem.max(1.0)
208    );
209    println!(
210        "  Time overhead: {:.1}x",
211        stream_time.as_secs_f64() / in_memory_time.as_secs_f64()
212    );
213    println!("  Streaming is beneficial for large datasets that don't fit in memory");
214
215    println!();
216    Ok(())
217}
218
219#[allow(dead_code)]
220fn demonstrate_stream_transformations() -> Result<(), Box<dyn std::error::Error>> {
221    println!("🔄 STREAM TRANSFORMATIONS");
222    println!("{}", "-".repeat(40));
223
224    // Create a transformer pipeline
225    let transformer = StreamTransformer::new()
226        .add_standard_scaling()
227        .add_missing_value_imputation();
228
229    println!("Created transformation pipeline:");
230    println!("  1. Standard scaling (z-score normalization)");
231    println!("  2. Missing value imputation");
232
233    let config = StreamConfig {
234        chunk_size: 2000,
235        buffer_size: 2,
236        max_chunks: Some(5),
237        ..Default::default()
238    };
239
240    let mut stream = stream_regression(10_000, 15, config)?;
241    let mut transformed_chunks = 0;
242
243    println!("\nProcessing and transforming chunks...");
244
245    while let Some(mut chunk) = stream.next_chunk()? {
246        println!("  Processing chunk {}", chunk.chunk_index + 1);
247
248        // Show statistics before transformation
249        let data_mean_before = chunk.data.mean_axis(scirs2_core::ndarray::Axis(0)).unwrap();
250        let data_std_before = chunk.data.std_axis(scirs2_core::ndarray::Axis(0), 0.0);
251
252        println!(
253            "    Before: mean = {:.3}, std = {:.3}",
254            data_mean_before[0], data_std_before[0]
255        );
256
257        // Apply transformations
258        transformer.transform_chunk(&mut chunk)?;
259
260        // Show statistics after transformation
261        let data_mean_after = chunk.data.mean_axis(scirs2_core::ndarray::Axis(0)).unwrap();
262        let data_std_after = chunk.data.std_axis(scirs2_core::ndarray::Axis(0), 0.0);
263
264        println!(
265            "    After:  mean = {:.3}, std = {:.3}",
266            data_mean_after[0], data_std_after[0]
267        );
268
269        transformed_chunks += 1;
270
271        if chunk.is_last {
272            break;
273        }
274    }
275
276    println!("\nTransformation Summary:");
277    println!("  Chunks processed: {transformed_chunks}");
278    println!("  Each chunk was transformed independently");
279    println!("  Memory-efficient: only one chunk in memory at a time");
280
281    println!();
282    Ok(())
283}
284
285#[allow(dead_code)]
286fn demonstrate_parallel_processing() -> Result<(), Box<dyn std::error::Error>> {
287    println!("⚡ PARALLEL STREAM PROCESSING");
288    println!("{}", "-".repeat(40));
289
290    let config = StreamConfig {
291        chunk_size: 1500,
292        buffer_size: 4,
293        num_workers: 4,
294        max_chunks: Some(8),
295        ..Default::default()
296    };
297
298    println!("Parallel processing configuration:");
299    println!("  Workers: {}", config.num_workers);
300    println!("  Chunk size: {}", config.chunk_size);
301    println!("  Buffer size: {}", config.buffer_size);
302
303    // Create a simple processor that computes statistics
304    let _processor: StreamProcessor<DataChunk> = StreamProcessor::new(config.clone());
305
306    // Define a processing function
307    let compute_stats = |chunk: DataChunk| -> Result<
308        HashMap<String, f64>,
309        Box<dyn std::error::Error + Send + Sync>,
310    > {
311        let mut stats = HashMap::new();
312
313        // Compute basic statistics
314        let mean = chunk.data.mean_axis(scirs2_core::ndarray::Axis(0)).unwrap();
315        let std = chunk.data.std_axis(scirs2_core::ndarray::Axis(0), 0.0);
316
317        stats.insert("mean_feature_0".to_string(), mean[0]);
318        stats.insert("std_feature_0".to_string(), std[0]);
319        stats.insert("n_samples".to_string(), chunk.n_samples() as f64);
320        stats.insert("chunk_index".to_string(), chunk.chunk_index as f64);
321
322        // Simulate some computation time
323        std::thread::sleep(std::time::Duration::from_millis(100));
324
325        Ok(stats)
326    };
327
328    println!("\nProcessing stream with parallel workers...");
329    let start_time = Instant::now();
330
331    let stream = stream_classification(12_000, 10, 3, config)?;
332
333    // For demonstration, we'll process chunks sequentially with timing
334    // In a real implementation, you'd use the processor.process_parallel method
335    let mut stream_iter = stream;
336    let mut chunk_results = Vec::new();
337
338    while let Some(chunk) = stream_iter.next_chunk()? {
339        let chunk_start = Instant::now();
340        let chunk_id = chunk.chunk_index;
341        let chunk_samples = chunk.n_samples();
342
343        // Process chunk
344        let stats = compute_stats(chunk)
345            .map_err(|e| -> Box<dyn std::error::Error> { Box::new(std::io::Error::other(e)) })?;
346        let chunk_time = chunk_start.elapsed();
347
348        println!(
349            "  Chunk {}: {} samples, {:.2}ms",
350            chunk_id + 1,
351            chunk_samples,
352            chunk_time.as_millis()
353        );
354
355        chunk_results.push(stats);
356
357        if chunk_results.len() >= 8 {
358            break;
359        }
360    }
361
362    let total_time = start_time.elapsed();
363
364    println!("\nParallel Processing Results:");
365    println!("  Total chunks: {}", chunk_results.len());
366    println!("  Total time: {:.2}s", total_time.as_secs_f64());
367    println!(
368        "  Average time per chunk: {:.2}ms",
369        total_time.as_millis() as f64 / chunk_results.len() as f64
370    );
371
372    // Aggregate statistics
373    let total_samples: f64 = chunk_results
374        .iter()
375        .map(|stats| stats.get("n_samples").unwrap_or(&0.0))
376        .sum();
377
378    println!("  Total samples processed: {total_samples}");
379    println!(
380        "  Throughput: {:.1} samples/s",
381        total_samples / total_time.as_secs_f64()
382    );
383
384    println!();
385    Ok(())
386}
387
388#[allow(dead_code)]
389fn demonstrate_performance_comparison() -> Result<(), Box<dyn std::error::Error>> {
390    println!("📊 PERFORMANCE COMPARISON");
391    println!("{}", "-".repeat(40));
392
393    let dataset_sizes = vec![10_000, 50_000, 100_000];
394    let chunk_sizes = vec![1_000, 5_000, 10_000];
395
396    println!("Comparing streaming performance across different configurations:");
397    println!();
398
399    for &datasetsize in &dataset_sizes {
400        println!("Dataset size: {datasetsize} samples");
401
402        for &chunksize in &chunk_sizes {
403            let config = StreamConfig {
404                chunk_size: chunksize,
405                buffer_size: 3,
406                num_workers: 2,
407                max_chunks: Some(datasetsize / chunksize),
408                ..Default::default()
409            };
410
411            let start_time = Instant::now();
412            let mut stream = stream_regression(datasetsize, 20, config)?;
413
414            let mut processed_samples = 0;
415            let mut processed_chunks = 0;
416
417            while let Some(chunk) = stream.next_chunk()? {
418                processed_samples += chunk.n_samples();
419                processed_chunks += 1;
420
421                // Simulate minimal processing
422                let _stats = chunk.data.mean_axis(scirs2_core::ndarray::Axis(0));
423
424                if chunk.is_last || processed_samples >= datasetsize {
425                    break;
426                }
427            }
428
429            let duration = start_time.elapsed();
430            let throughput = processed_samples as f64 / duration.as_secs_f64();
431
432            println!(
433                "  Chunk size {}: {:.2}s ({:.1} samples/s, {} chunks)",
434                chunksize,
435                duration.as_secs_f64(),
436                throughput,
437                processed_chunks
438            );
439        }
440        println!();
441    }
442
443    println!("Performance Insights:");
444    println!("  • Larger chunks = fewer iterations, better throughput");
445    println!("  • Smaller chunks = lower memory usage, more responsive");
446    println!("  • Optimal chunk size depends on memory constraints and processing complexity");
447
448    println!();
449    Ok(())
450}
451
452#[allow(dead_code)]
453fn demonstrate_real_world_scenarios() -> Result<(), Box<dyn std::error::Error>> {
454    println!("🌍 REAL-WORLD STREAMING SCENARIOS");
455    println!("{}", "-".repeat(40));
456
457    // Scenario 1: Training on large dataset with limited memory
458    println!("Scenario 1: Large dataset training with memory constraints");
459    simulate_training_scenario()?;
460
461    // Scenario 2: Data preprocessing pipeline
462    println!("\nScenario 2: Data preprocessing pipeline");
463    simulate_preprocessing_pipeline()?;
464
465    // Scenario 3: Model evaluation on large test set
466    println!("\nScenario 3: Model evaluation on large test set");
467    simulate_model_evaluation()?;
468
469    println!();
470    Ok(())
471}
472
473#[allow(dead_code)]
474fn simulate_training_scenario() -> Result<(), Box<dyn std::error::Error>> {
475    println!("  • Dataset: 500K samples, 100 features");
476    println!("  • Memory limit: 200MB");
477    println!("  • Goal: Train incrementally using mini-batches");
478
479    let config = StreamConfig {
480        chunk_size: 5_000, // Mini-batch size
481        buffer_size: 2,    // Keep memory low
482        memory_limit_mb: Some(200),
483        max_chunks: Some(10), // Simulate partial processing
484        ..Default::default()
485    };
486
487    let mut stream = stream_classification(500_000, 100, 10, config)?;
488    let mut total_batches = 0;
489    let mut total_samples = 0;
490
491    let start_time = Instant::now();
492
493    while let Some(chunk) = stream.next_chunk()? {
494        // Simulate training on mini-batch
495        let batchsize = chunk.n_samples();
496
497        // Simulate gradient computation time
498        std::thread::sleep(std::time::Duration::from_millis(20));
499
500        total_batches += 1;
501        total_samples += batchsize;
502
503        if total_batches % 3 == 0 {
504            println!("    Processed {total_batches} batches ({total_samples} samples)");
505        }
506
507        if chunk.is_last {
508            break;
509        }
510    }
511
512    let duration = start_time.elapsed();
513    println!(
514        "  ✅ Training simulation: {} batches, {:.2}s",
515        total_batches,
516        duration.as_secs_f64()
517    );
518
519    Ok(())
520}
521
522#[allow(dead_code)]
523fn simulate_preprocessing_pipeline() -> Result<(), Box<dyn std::error::Error>> {
524    println!("  • Raw data → Clean → Scale → Feature selection");
525    println!("  • Process 200K samples in chunks");
526
527    let config = StreamConfig {
528        chunk_size: 8_000,
529        buffer_size: 3,
530        max_chunks: Some(5),
531        ..Default::default()
532    };
533
534    let transformer = StreamTransformer::new()
535        .add_missing_value_imputation()
536        .add_standard_scaling();
537
538    let mut stream = stream_regression(200_000, 50, config)?;
539    let mut processed_chunks = 0;
540
541    while let Some(mut chunk) = stream.next_chunk()? {
542        // Step 1: Clean data (remove outliers, handle missing values)
543        transformer.transform_chunk(&mut chunk)?;
544
545        // Step 2: Feature selection (simulate by keeping first 30 features)
546        let selecteddata = chunk
547            .data
548            .slice(scirs2_core::ndarray::s![.., ..30])
549            .to_owned();
550
551        processed_chunks += 1;
552        println!(
553            "    Chunk {}: {} → {} features",
554            processed_chunks,
555            chunk.n_features(),
556            selecteddata.ncols()
557        );
558
559        if chunk.is_last {
560            break;
561        }
562    }
563
564    println!("  ✅ Preprocessing pipeline: {processed_chunks} chunks processed");
565
566    Ok(())
567}
568
569#[allow(dead_code)]
570fn simulate_model_evaluation() -> Result<(), Box<dyn std::error::Error>> {
571    println!("  • Evaluate model on 1M test samples");
572    println!("  • Compute accuracy in streaming fashion");
573
574    let config = StreamConfig {
575        chunk_size: 10_000,
576        buffer_size: 2,
577        max_chunks: Some(8),
578        ..Default::default()
579    };
580
581    let mut stream = stream_classification(1_000_000, 20, 5, config)?;
582    let mut correct_predictions = 0;
583    let mut total_predictions = 0;
584
585    while let Some(chunk) = stream.next_chunk()? {
586        if let Some(true_labels) = &chunk.target {
587            // Simulate model predictions (random for demo)
588            let predictions: Vec<f64> = (0..chunk.n_samples())
589                .map(|_| (scirs2_core::random::random::<f64>() * 5.0).floor())
590                .collect();
591
592            // Calculate accuracy for this chunk
593            let chunk_correct = true_labels
594                .iter()
595                .zip(predictions.iter())
596                .filter(|(&true_label, &pred)| (true_label - pred).abs() < 0.5)
597                .count();
598
599            correct_predictions += chunk_correct;
600            total_predictions += chunk.n_samples();
601        }
602
603        if chunk.is_last {
604            break;
605        }
606    }
607
608    let accuracy = correct_predictions as f64 / total_predictions as f64;
609    println!(
610        "  ✅ Model evaluation: {:.1}% accuracy on {} samples",
611        accuracy * 100.0,
612        total_predictions
613    );
614
615    Ok(())
616}
Source

pub fn n_features(&self) -> usize

Number of features in this chunk

Examples found in repository?
examples/datasets_streaming_demo.rs (line 555)
523fn simulate_preprocessing_pipeline() -> Result<(), Box<dyn std::error::Error>> {
524    println!("  • Raw data → Clean → Scale → Feature selection");
525    println!("  • Process 200K samples in chunks");
526
527    let config = StreamConfig {
528        chunk_size: 8_000,
529        buffer_size: 3,
530        max_chunks: Some(5),
531        ..Default::default()
532    };
533
534    let transformer = StreamTransformer::new()
535        .add_missing_value_imputation()
536        .add_standard_scaling();
537
538    let mut stream = stream_regression(200_000, 50, config)?;
539    let mut processed_chunks = 0;
540
541    while let Some(mut chunk) = stream.next_chunk()? {
542        // Step 1: Clean data (remove outliers, handle missing values)
543        transformer.transform_chunk(&mut chunk)?;
544
545        // Step 2: Feature selection (simulate by keeping first 30 features)
546        let selecteddata = chunk
547            .data
548            .slice(scirs2_core::ndarray::s![.., ..30])
549            .to_owned();
550
551        processed_chunks += 1;
552        println!(
553            "    Chunk {}: {} → {} features",
554            processed_chunks,
555            chunk.n_features(),
556            selecteddata.ncols()
557        );
558
559        if chunk.is_last {
560            break;
561        }
562    }
563
564    println!("  ✅ Preprocessing pipeline: {processed_chunks} chunks processed");
565
566    Ok(())
567}
Source

pub fn to_dataset(&self) -> Dataset

Convert chunk to a Dataset

Trait Implementations§

Source§

impl Clone for DataChunk

Source§

fn clone(&self) -> DataChunk

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for DataChunk

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V