AdvancedDatasetAnalyzer

Struct AdvancedDatasetAnalyzer 

Source
pub struct AdvancedDatasetAnalyzer { /* private fields */ }
Expand description

Advanced dataset analyzer with configurable options

Implementations§

Source§

impl AdvancedDatasetAnalyzer

Source

pub fn new() -> Self

Create a new analyzer with default settings

Examples found in repository?
examples/advanced_showcase.rs (line 87)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75    println!("\n🧠 Advanced Analytics Demonstration");
76    println!("==========================================");
77
78    // Quick quality assessment
79    println!("📈 Running quick quality assessment...");
80    let quick_quality = quick_quality_assessment(dataset)?;
81    println!("   Quality Score: {quick_quality:.3}");
82
83    // Comprehensive advanced-analysis
84    println!("🔬 Running comprehensive advanced-analysis...");
85    let start_time = Instant::now();
86
87    let analyzer = AdvancedDatasetAnalyzer::new()
88        .with_gpu(true)
89        .with_advanced_precision(true)
90        .with_significance_threshold(0.01);
91
92    let metrics = analyzer.analyze_dataset_quality(dataset)?;
93    let analysis_time = start_time.elapsed();
94
95    println!("   Analysis completed in: {analysis_time:?}");
96    println!("   Complexity Score: {:.3}", metrics.complexity_score);
97    println!("   Entropy: {:.3}", metrics.entropy);
98    println!("   Outlier Score: {:.3}", metrics.outlier_score);
99    println!("   ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101    // Display normality assessment
102    println!("   Normality Assessment:");
103    println!(
104        "     Overall Normality: {:.3}",
105        metrics.normality_assessment.overall_normality
106    );
107    println!(
108        "     Shapiro-Wilk (avg): {:.3}",
109        metrics.normality_assessment.shapiro_wilk_scores.mean()
110    );
111
112    // Display correlation insights
113    println!("   Correlation Insights:");
114    println!(
115        "     Feature Importance (top 3): {:?}",
116        metrics
117            .correlation_insights
118            .feature_importance
119            .iter()
120            .take(3)
121            .map(|&x| format!("{x:.3}"))
122            .collect::<Vec<_>>()
123    );
124
125    Ok(())
126}
Source

pub fn with_gpu(self, enabled: bool) -> Self

Enable GPU acceleration

Examples found in repository?
examples/advanced_showcase.rs (line 88)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75    println!("\n🧠 Advanced Analytics Demonstration");
76    println!("==========================================");
77
78    // Quick quality assessment
79    println!("📈 Running quick quality assessment...");
80    let quick_quality = quick_quality_assessment(dataset)?;
81    println!("   Quality Score: {quick_quality:.3}");
82
83    // Comprehensive advanced-analysis
84    println!("🔬 Running comprehensive advanced-analysis...");
85    let start_time = Instant::now();
86
87    let analyzer = AdvancedDatasetAnalyzer::new()
88        .with_gpu(true)
89        .with_advanced_precision(true)
90        .with_significance_threshold(0.01);
91
92    let metrics = analyzer.analyze_dataset_quality(dataset)?;
93    let analysis_time = start_time.elapsed();
94
95    println!("   Analysis completed in: {analysis_time:?}");
96    println!("   Complexity Score: {:.3}", metrics.complexity_score);
97    println!("   Entropy: {:.3}", metrics.entropy);
98    println!("   Outlier Score: {:.3}", metrics.outlier_score);
99    println!("   ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101    // Display normality assessment
102    println!("   Normality Assessment:");
103    println!(
104        "     Overall Normality: {:.3}",
105        metrics.normality_assessment.overall_normality
106    );
107    println!(
108        "     Shapiro-Wilk (avg): {:.3}",
109        metrics.normality_assessment.shapiro_wilk_scores.mean()
110    );
111
112    // Display correlation insights
113    println!("   Correlation Insights:");
114    println!(
115        "     Feature Importance (top 3): {:?}",
116        metrics
117            .correlation_insights
118            .feature_importance
119            .iter()
120            .take(3)
121            .map(|&x| format!("{x:.3}"))
122            .collect::<Vec<_>>()
123    );
124
125    Ok(())
126}
Source

pub fn with_advanced_precision(self, enabled: bool) -> Self

Enable advanced precision calculations

Examples found in repository?
examples/advanced_showcase.rs (line 89)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75    println!("\n🧠 Advanced Analytics Demonstration");
76    println!("==========================================");
77
78    // Quick quality assessment
79    println!("📈 Running quick quality assessment...");
80    let quick_quality = quick_quality_assessment(dataset)?;
81    println!("   Quality Score: {quick_quality:.3}");
82
83    // Comprehensive advanced-analysis
84    println!("🔬 Running comprehensive advanced-analysis...");
85    let start_time = Instant::now();
86
87    let analyzer = AdvancedDatasetAnalyzer::new()
88        .with_gpu(true)
89        .with_advanced_precision(true)
90        .with_significance_threshold(0.01);
91
92    let metrics = analyzer.analyze_dataset_quality(dataset)?;
93    let analysis_time = start_time.elapsed();
94
95    println!("   Analysis completed in: {analysis_time:?}");
96    println!("   Complexity Score: {:.3}", metrics.complexity_score);
97    println!("   Entropy: {:.3}", metrics.entropy);
98    println!("   Outlier Score: {:.3}", metrics.outlier_score);
99    println!("   ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101    // Display normality assessment
102    println!("   Normality Assessment:");
103    println!(
104        "     Overall Normality: {:.3}",
105        metrics.normality_assessment.overall_normality
106    );
107    println!(
108        "     Shapiro-Wilk (avg): {:.3}",
109        metrics.normality_assessment.shapiro_wilk_scores.mean()
110    );
111
112    // Display correlation insights
113    println!("   Correlation Insights:");
114    println!(
115        "     Feature Importance (top 3): {:?}",
116        metrics
117            .correlation_insights
118            .feature_importance
119            .iter()
120            .take(3)
121            .map(|&x| format!("{x:.3}"))
122            .collect::<Vec<_>>()
123    );
124
125    Ok(())
126}
Source

pub fn with_significance_threshold(self, threshold: f64) -> Self

Set significance threshold for statistical tests

Examples found in repository?
examples/advanced_showcase.rs (line 90)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75    println!("\n🧠 Advanced Analytics Demonstration");
76    println!("==========================================");
77
78    // Quick quality assessment
79    println!("📈 Running quick quality assessment...");
80    let quick_quality = quick_quality_assessment(dataset)?;
81    println!("   Quality Score: {quick_quality:.3}");
82
83    // Comprehensive advanced-analysis
84    println!("🔬 Running comprehensive advanced-analysis...");
85    let start_time = Instant::now();
86
87    let analyzer = AdvancedDatasetAnalyzer::new()
88        .with_gpu(true)
89        .with_advanced_precision(true)
90        .with_significance_threshold(0.01);
91
92    let metrics = analyzer.analyze_dataset_quality(dataset)?;
93    let analysis_time = start_time.elapsed();
94
95    println!("   Analysis completed in: {analysis_time:?}");
96    println!("   Complexity Score: {:.3}", metrics.complexity_score);
97    println!("   Entropy: {:.3}", metrics.entropy);
98    println!("   Outlier Score: {:.3}", metrics.outlier_score);
99    println!("   ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101    // Display normality assessment
102    println!("   Normality Assessment:");
103    println!(
104        "     Overall Normality: {:.3}",
105        metrics.normality_assessment.overall_normality
106    );
107    println!(
108        "     Shapiro-Wilk (avg): {:.3}",
109        metrics.normality_assessment.shapiro_wilk_scores.mean()
110    );
111
112    // Display correlation insights
113    println!("   Correlation Insights:");
114    println!(
115        "     Feature Importance (top 3): {:?}",
116        metrics
117            .correlation_insights
118            .feature_importance
119            .iter()
120            .take(3)
121            .map(|&x| format!("{x:.3}"))
122            .collect::<Vec<_>>()
123    );
124
125    Ok(())
126}
Source

pub fn analyze_dataset_quality( &self, dataset: &Dataset, ) -> Result<AdvancedQualityMetrics, Box<dyn Error>>

Analyze dataset quality with advanced metrics

Examples found in repository?
examples/advanced_showcase.rs (line 92)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75    println!("\n🧠 Advanced Analytics Demonstration");
76    println!("==========================================");
77
78    // Quick quality assessment
79    println!("📈 Running quick quality assessment...");
80    let quick_quality = quick_quality_assessment(dataset)?;
81    println!("   Quality Score: {quick_quality:.3}");
82
83    // Comprehensive advanced-analysis
84    println!("🔬 Running comprehensive advanced-analysis...");
85    let start_time = Instant::now();
86
87    let analyzer = AdvancedDatasetAnalyzer::new()
88        .with_gpu(true)
89        .with_advanced_precision(true)
90        .with_significance_threshold(0.01);
91
92    let metrics = analyzer.analyze_dataset_quality(dataset)?;
93    let analysis_time = start_time.elapsed();
94
95    println!("   Analysis completed in: {analysis_time:?}");
96    println!("   Complexity Score: {:.3}", metrics.complexity_score);
97    println!("   Entropy: {:.3}", metrics.entropy);
98    println!("   Outlier Score: {:.3}", metrics.outlier_score);
99    println!("   ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101    // Display normality assessment
102    println!("   Normality Assessment:");
103    println!(
104        "     Overall Normality: {:.3}",
105        metrics.normality_assessment.overall_normality
106    );
107    println!(
108        "     Shapiro-Wilk (avg): {:.3}",
109        metrics.normality_assessment.shapiro_wilk_scores.mean()
110    );
111
112    // Display correlation insights
113    println!("   Correlation Insights:");
114    println!(
115        "     Feature Importance (top 3): {:?}",
116        metrics
117            .correlation_insights
118            .feature_importance
119            .iter()
120            .take(3)
121            .map(|&x| format!("{x:.3}"))
122            .collect::<Vec<_>>()
123    );
124
125    Ok(())
126}

Trait Implementations§

Source§

impl Clone for AdvancedDatasetAnalyzer

Source§

fn clone(&self) -> AdvancedDatasetAnalyzer

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for AdvancedDatasetAnalyzer

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for AdvancedDatasetAnalyzer

Source§

fn default() -> Self

Returns the “default value” for a type. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V