pub struct AdvancedDatasetAnalyzer { /* private fields */ }
Expand description
Advanced dataset analyzer with configurable options
Implementations§
Source§impl AdvancedDatasetAnalyzer
impl AdvancedDatasetAnalyzer
Sourcepub fn new() -> Self
pub fn new() -> Self
Create a new analyzer with default settings
Examples found in repository?
examples/advanced_showcase.rs (line 87)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75 println!("\n🧠 Advanced Analytics Demonstration");
76 println!("==========================================");
77
78 // Quick quality assessment
79 println!("📈 Running quick quality assessment...");
80 let quick_quality = quick_quality_assessment(dataset)?;
81 println!(" Quality Score: {quick_quality:.3}");
82
83 // Comprehensive advanced-analysis
84 println!("🔬 Running comprehensive advanced-analysis...");
85 let start_time = Instant::now();
86
87 let analyzer = AdvancedDatasetAnalyzer::new()
88 .with_gpu(true)
89 .with_advanced_precision(true)
90 .with_significance_threshold(0.01);
91
92 let metrics = analyzer.analyze_dataset_quality(dataset)?;
93 let analysis_time = start_time.elapsed();
94
95 println!(" Analysis completed in: {analysis_time:?}");
96 println!(" Complexity Score: {:.3}", metrics.complexity_score);
97 println!(" Entropy: {:.3}", metrics.entropy);
98 println!(" Outlier Score: {:.3}", metrics.outlier_score);
99 println!(" ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101 // Display normality assessment
102 println!(" Normality Assessment:");
103 println!(
104 " Overall Normality: {:.3}",
105 metrics.normality_assessment.overall_normality
106 );
107 println!(
108 " Shapiro-Wilk (avg): {:.3}",
109 metrics.normality_assessment.shapiro_wilk_scores.mean()
110 );
111
112 // Display correlation insights
113 println!(" Correlation Insights:");
114 println!(
115 " Feature Importance (top 3): {:?}",
116 metrics
117 .correlation_insights
118 .feature_importance
119 .iter()
120 .take(3)
121 .map(|&x| format!("{x:.3}"))
122 .collect::<Vec<_>>()
123 );
124
125 Ok(())
126}
Sourcepub fn with_gpu(self, enabled: bool) -> Self
pub fn with_gpu(self, enabled: bool) -> Self
Enable GPU acceleration
Examples found in repository?
examples/advanced_showcase.rs (line 88)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75 println!("\n🧠 Advanced Analytics Demonstration");
76 println!("==========================================");
77
78 // Quick quality assessment
79 println!("📈 Running quick quality assessment...");
80 let quick_quality = quick_quality_assessment(dataset)?;
81 println!(" Quality Score: {quick_quality:.3}");
82
83 // Comprehensive advanced-analysis
84 println!("🔬 Running comprehensive advanced-analysis...");
85 let start_time = Instant::now();
86
87 let analyzer = AdvancedDatasetAnalyzer::new()
88 .with_gpu(true)
89 .with_advanced_precision(true)
90 .with_significance_threshold(0.01);
91
92 let metrics = analyzer.analyze_dataset_quality(dataset)?;
93 let analysis_time = start_time.elapsed();
94
95 println!(" Analysis completed in: {analysis_time:?}");
96 println!(" Complexity Score: {:.3}", metrics.complexity_score);
97 println!(" Entropy: {:.3}", metrics.entropy);
98 println!(" Outlier Score: {:.3}", metrics.outlier_score);
99 println!(" ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101 // Display normality assessment
102 println!(" Normality Assessment:");
103 println!(
104 " Overall Normality: {:.3}",
105 metrics.normality_assessment.overall_normality
106 );
107 println!(
108 " Shapiro-Wilk (avg): {:.3}",
109 metrics.normality_assessment.shapiro_wilk_scores.mean()
110 );
111
112 // Display correlation insights
113 println!(" Correlation Insights:");
114 println!(
115 " Feature Importance (top 3): {:?}",
116 metrics
117 .correlation_insights
118 .feature_importance
119 .iter()
120 .take(3)
121 .map(|&x| format!("{x:.3}"))
122 .collect::<Vec<_>>()
123 );
124
125 Ok(())
126}
Sourcepub fn with_advanced_precision(self, enabled: bool) -> Self
pub fn with_advanced_precision(self, enabled: bool) -> Self
Enable advanced precision calculations
Examples found in repository?
examples/advanced_showcase.rs (line 89)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75 println!("\n🧠 Advanced Analytics Demonstration");
76 println!("==========================================");
77
78 // Quick quality assessment
79 println!("📈 Running quick quality assessment...");
80 let quick_quality = quick_quality_assessment(dataset)?;
81 println!(" Quality Score: {quick_quality:.3}");
82
83 // Comprehensive advanced-analysis
84 println!("🔬 Running comprehensive advanced-analysis...");
85 let start_time = Instant::now();
86
87 let analyzer = AdvancedDatasetAnalyzer::new()
88 .with_gpu(true)
89 .with_advanced_precision(true)
90 .with_significance_threshold(0.01);
91
92 let metrics = analyzer.analyze_dataset_quality(dataset)?;
93 let analysis_time = start_time.elapsed();
94
95 println!(" Analysis completed in: {analysis_time:?}");
96 println!(" Complexity Score: {:.3}", metrics.complexity_score);
97 println!(" Entropy: {:.3}", metrics.entropy);
98 println!(" Outlier Score: {:.3}", metrics.outlier_score);
99 println!(" ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101 // Display normality assessment
102 println!(" Normality Assessment:");
103 println!(
104 " Overall Normality: {:.3}",
105 metrics.normality_assessment.overall_normality
106 );
107 println!(
108 " Shapiro-Wilk (avg): {:.3}",
109 metrics.normality_assessment.shapiro_wilk_scores.mean()
110 );
111
112 // Display correlation insights
113 println!(" Correlation Insights:");
114 println!(
115 " Feature Importance (top 3): {:?}",
116 metrics
117 .correlation_insights
118 .feature_importance
119 .iter()
120 .take(3)
121 .map(|&x| format!("{x:.3}"))
122 .collect::<Vec<_>>()
123 );
124
125 Ok(())
126}
Sourcepub fn with_significance_threshold(self, threshold: f64) -> Self
pub fn with_significance_threshold(self, threshold: f64) -> Self
Set significance threshold for statistical tests
Examples found in repository?
examples/advanced_showcase.rs (line 90)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75 println!("\n🧠 Advanced Analytics Demonstration");
76 println!("==========================================");
77
78 // Quick quality assessment
79 println!("📈 Running quick quality assessment...");
80 let quick_quality = quick_quality_assessment(dataset)?;
81 println!(" Quality Score: {quick_quality:.3}");
82
83 // Comprehensive advanced-analysis
84 println!("🔬 Running comprehensive advanced-analysis...");
85 let start_time = Instant::now();
86
87 let analyzer = AdvancedDatasetAnalyzer::new()
88 .with_gpu(true)
89 .with_advanced_precision(true)
90 .with_significance_threshold(0.01);
91
92 let metrics = analyzer.analyze_dataset_quality(dataset)?;
93 let analysis_time = start_time.elapsed();
94
95 println!(" Analysis completed in: {analysis_time:?}");
96 println!(" Complexity Score: {:.3}", metrics.complexity_score);
97 println!(" Entropy: {:.3}", metrics.entropy);
98 println!(" Outlier Score: {:.3}", metrics.outlier_score);
99 println!(" ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101 // Display normality assessment
102 println!(" Normality Assessment:");
103 println!(
104 " Overall Normality: {:.3}",
105 metrics.normality_assessment.overall_normality
106 );
107 println!(
108 " Shapiro-Wilk (avg): {:.3}",
109 metrics.normality_assessment.shapiro_wilk_scores.mean()
110 );
111
112 // Display correlation insights
113 println!(" Correlation Insights:");
114 println!(
115 " Feature Importance (top 3): {:?}",
116 metrics
117 .correlation_insights
118 .feature_importance
119 .iter()
120 .take(3)
121 .map(|&x| format!("{x:.3}"))
122 .collect::<Vec<_>>()
123 );
124
125 Ok(())
126}
Sourcepub fn analyze_dataset_quality(
&self,
dataset: &Dataset,
) -> Result<AdvancedQualityMetrics, Box<dyn Error>>
pub fn analyze_dataset_quality( &self, dataset: &Dataset, ) -> Result<AdvancedQualityMetrics, Box<dyn Error>>
Analyze dataset quality with advanced metrics
Examples found in repository?
examples/advanced_showcase.rs (line 92)
74fn demonstrate_advanced_analytics(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
75 println!("\n🧠 Advanced Analytics Demonstration");
76 println!("==========================================");
77
78 // Quick quality assessment
79 println!("📈 Running quick quality assessment...");
80 let quick_quality = quick_quality_assessment(dataset)?;
81 println!(" Quality Score: {quick_quality:.3}");
82
83 // Comprehensive advanced-analysis
84 println!("🔬 Running comprehensive advanced-analysis...");
85 let start_time = Instant::now();
86
87 let analyzer = AdvancedDatasetAnalyzer::new()
88 .with_gpu(true)
89 .with_advanced_precision(true)
90 .with_significance_threshold(0.01);
91
92 let metrics = analyzer.analyze_dataset_quality(dataset)?;
93 let analysis_time = start_time.elapsed();
94
95 println!(" Analysis completed in: {analysis_time:?}");
96 println!(" Complexity Score: {:.3}", metrics.complexity_score);
97 println!(" Entropy: {:.3}", metrics.entropy);
98 println!(" Outlier Score: {:.3}", metrics.outlier_score);
99 println!(" ML Quality Score: {:.3}", metrics.ml_quality_score);
100
101 // Display normality assessment
102 println!(" Normality Assessment:");
103 println!(
104 " Overall Normality: {:.3}",
105 metrics.normality_assessment.overall_normality
106 );
107 println!(
108 " Shapiro-Wilk (avg): {:.3}",
109 metrics.normality_assessment.shapiro_wilk_scores.mean()
110 );
111
112 // Display correlation insights
113 println!(" Correlation Insights:");
114 println!(
115 " Feature Importance (top 3): {:?}",
116 metrics
117 .correlation_insights
118 .feature_importance
119 .iter()
120 .take(3)
121 .map(|&x| format!("{x:.3}"))
122 .collect::<Vec<_>>()
123 );
124
125 Ok(())
126}
Trait Implementations§
Source§impl Clone for AdvancedDatasetAnalyzer
impl Clone for AdvancedDatasetAnalyzer
Source§fn clone(&self) -> AdvancedDatasetAnalyzer
fn clone(&self) -> AdvancedDatasetAnalyzer
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl Debug for AdvancedDatasetAnalyzer
impl Debug for AdvancedDatasetAnalyzer
Auto Trait Implementations§
impl Freeze for AdvancedDatasetAnalyzer
impl RefUnwindSafe for AdvancedDatasetAnalyzer
impl Send for AdvancedDatasetAnalyzer
impl Sync for AdvancedDatasetAnalyzer
impl Unpin for AdvancedDatasetAnalyzer
impl UnwindSafe for AdvancedDatasetAnalyzer
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.