pub struct AdaptiveStreamingEngine { /* private fields */ }Expand description
Advanced-advanced adaptive streaming processor
Implementations§
Source§impl AdaptiveStreamingEngine
 
impl AdaptiveStreamingEngine
Sourcepub fn new(config: AdaptiveStreamConfig) -> Self
 
pub fn new(config: AdaptiveStreamConfig) -> Self
Create a new adaptive streaming engine
Sourcepub fn process_stream(&mut self, chunk: StreamChunk) -> Result<Vec<Dataset>>
 
pub fn process_stream(&mut self, chunk: StreamChunk) -> Result<Vec<Dataset>>
Process incoming data stream
Examples found in repository?
examples/advanced_showcase.rs (line 252)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}Sourcepub fn get_performance_metrics(&self) -> Result<PerformanceMetrics>
 
pub fn get_performance_metrics(&self) -> Result<PerformanceMetrics>
Get current performance metrics
Examples found in repository?
examples/advanced_showcase.rs (line 271)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}Sourcepub fn get_quality_metrics(&self) -> Result<QualityMetrics>
 
pub fn get_quality_metrics(&self) -> Result<QualityMetrics>
Get current quality metrics
Examples found in repository?
examples/advanced_showcase.rs (line 280)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}Sourcepub fn get_buffer_statistics(&self) -> Result<BufferStatistics>
 
pub fn get_buffer_statistics(&self) -> Result<BufferStatistics>
Get buffer statistics
Examples found in repository?
examples/advanced_showcase.rs (line 296)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}Source§impl AdaptiveStreamingEngine
Enhanced Adaptive Streaming Engine with Quantum and Neural Optimization
 
impl AdaptiveStreamingEngine
Enhanced Adaptive Streaming Engine with Quantum and Neural Optimization
Sourcepub fn with_quantum_neural_optimization(config: AdaptiveStreamConfig) -> Self
 
pub fn with_quantum_neural_optimization(config: AdaptiveStreamConfig) -> Self
Create advanced streaming engine with quantum and neural optimization
Sourcepub fn quantum_optimize(
    &mut self,
    performance_metrics: &PerformanceMetrics,
) -> Result<OptimizationConfig>
 
pub fn quantum_optimize( &mut self, performance_metrics: &PerformanceMetrics, ) -> Result<OptimizationConfig>
Optimize using quantum-inspired algorithms
Sourcepub fn neural_adapt(
    &mut self,
    features: &Array1<f64>,
    targets: &Array1<f64>,
) -> Result<LearningStatistics>
 
pub fn neural_adapt( &mut self, features: &Array1<f64>, targets: &Array1<f64>, ) -> Result<LearningStatistics>
Learn and adapt using neural system
Sourcepub fn predict_future_performance(
    &self,
    horizon: Duration,
) -> Result<PerformancePredictionPoint>
 
pub fn predict_future_performance( &self, horizon: Duration, ) -> Result<PerformancePredictionPoint>
Predict future performance using advanced models
Auto Trait Implementations§
impl Freeze for AdaptiveStreamingEngine
impl RefUnwindSafe for AdaptiveStreamingEngine
impl Send for AdaptiveStreamingEngine
impl Sync for AdaptiveStreamingEngine
impl Unpin for AdaptiveStreamingEngine
impl UnwindSafe for AdaptiveStreamingEngine
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
 
impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
 
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
 
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
 
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts 
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
 
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts 
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
 
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
    SS: SubsetOf<SP>,
 
impl<SS, SP> SupersetOf<SS> for SPwhere
    SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
 
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct 
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
 
fn is_in_subset(&self) -> bool
Checks if 
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
 
fn to_subset_unchecked(&self) -> SS
Use with care! Same as 
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
 
fn from_subset(element: &SS) -> SP
The inclusion map: converts 
self to the equivalent element of its superset.