AdaptiveStreamingEngine

Struct AdaptiveStreamingEngine 

Source
pub struct AdaptiveStreamingEngine { /* private fields */ }
Expand description

Advanced-advanced adaptive streaming processor

Implementations§

Source§

impl AdaptiveStreamingEngine

Source

pub fn new(config: AdaptiveStreamConfig) -> Self

Create a new adaptive streaming engine

Source

pub fn process_stream(&mut self, chunk: StreamChunk) -> Result<Vec<Dataset>>

Process incoming data stream

Examples found in repository?
examples/advanced_showcase.rs (line 252)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}
Source

pub fn get_performance_metrics(&self) -> Result<PerformanceMetrics>

Get current performance metrics

Examples found in repository?
examples/advanced_showcase.rs (line 271)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}
Source

pub fn get_quality_metrics(&self) -> Result<QualityMetrics>

Get current quality metrics

Examples found in repository?
examples/advanced_showcase.rs (line 280)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}
Source

pub fn get_buffer_statistics(&self) -> Result<BufferStatistics>

Get buffer statistics

Examples found in repository?
examples/advanced_showcase.rs (line 296)
199fn demonstrate_adaptive_streaming(dataset: &Dataset) -> Result<(), Box<dyn std::error::Error>> {
200    println!("\n🌊 Adaptive Streaming Demonstration");
201    println!("===================================");
202
203    // Configure streaming engine
204    let config = AdaptiveStreamConfig::default();
205
206    println!("🔧 Initializing adaptive streaming engine...");
207    let mut engine = create_adaptive_engine_with_config(config);
208
209    // Simulate streaming data
210    println!("📡 Simulating data stream...");
211    let data = &dataset.data;
212    let chunksize = 20;
213    let num_chunks = (data.nrows() / chunksize).min(10); // Limit for demo
214
215    let mut total_processed = 0;
216    let start_time = Instant::now();
217
218    for i in 0..num_chunks {
219        let start_row = i * chunksize;
220        let end_row = (start_row + chunksize).min(data.nrows());
221
222        // Create chunk from dataset slice
223        let chunkdata = data.slice(ndarray::s![start_row..end_row, ..]).to_owned();
224
225        let chunk = StreamChunk {
226            data: chunkdata,
227            timestamp: Instant::now(),
228            metadata: ChunkMetadata {
229                source_id: format!("demo_source_{i}"),
230                sequence_number: i as u64,
231                characteristics: DataCharacteristics {
232                    moments: StatisticalMoments {
233                        mean: 0.0,
234                        variance: 1.0,
235                        skewness: 0.0,
236                        kurtosis: 0.0,
237                    },
238                    entropy: 1.0,
239                    trend: TrendIndicators {
240                        linear_slope: 0.1,
241                        trend_strength: 0.5,
242                        direction: TrendDirection::Increasing,
243                        seasonality: 0.2,
244                    },
245                    anomaly_score: 0.1,
246                },
247            },
248            quality_score: 0.9,
249        };
250
251        // Process chunk
252        let results = engine.process_stream(chunk)?;
253        total_processed += results.len();
254
255        if !results.is_empty() {
256            println!(
257                "   Processed batch {}: {} datasets generated",
258                i + 1,
259                results.len()
260            );
261        }
262    }
263
264    let streaming_time = start_time.elapsed();
265
266    println!("   Streaming completed in: {streaming_time:?}");
267    println!("   Total datasets processed: {total_processed}");
268
269    // Get performance metrics
270    println!("📈 Getting performance metrics...");
271    let perf_metrics = engine.get_performance_metrics()?;
272    println!("   Processing Latency: {:?}", perf_metrics.latency);
273    println!("   Throughput: {:.1} chunks/sec", perf_metrics.throughput);
274    println!(
275        "   Memory Efficiency: {:.1}%",
276        perf_metrics.memory_efficiency * 100.0
277    );
278
279    // Get quality metrics
280    let quality_metrics = engine.get_quality_metrics()?;
281    println!("   Quality Metrics:");
282    println!(
283        "     Integrity: {:.1}%",
284        quality_metrics.integrity_score * 100.0
285    );
286    println!(
287        "     Completeness: {:.1}%",
288        quality_metrics.completeness_score * 100.0
289    );
290    println!(
291        "     Overall Quality: {:.1}%",
292        quality_metrics.overall_score * 100.0
293    );
294
295    // Get buffer statistics
296    let buffer_stats = engine.get_buffer_statistics()?;
297    println!("   Buffer Statistics:");
298    println!("     Utilization: {:.1}%", buffer_stats.utilization * 100.0);
299    println!("     Memory Usage: {} bytes", buffer_stats.memory_usage);
300
301    Ok(())
302}
Source§

impl AdaptiveStreamingEngine

Enhanced Adaptive Streaming Engine with Quantum and Neural Optimization

Source

pub fn with_quantum_neural_optimization(config: AdaptiveStreamConfig) -> Self

Create advanced streaming engine with quantum and neural optimization

Source

pub fn quantum_optimize( &mut self, performance_metrics: &PerformanceMetrics, ) -> Result<OptimizationConfig>

Optimize using quantum-inspired algorithms

Source

pub fn neural_adapt( &mut self, features: &Array1<f64>, targets: &Array1<f64>, ) -> Result<LearningStatistics>

Learn and adapt using neural system

Source

pub fn predict_future_performance( &self, horizon: Duration, ) -> Result<PerformancePredictionPoint>

Predict future performance using advanced models

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> ErasedDestructor for T
where T: 'static,