Enum sc_sysinfo::ExecutionLimit
source · pub enum ExecutionLimit {
MaxDuration(Duration),
MaxIterations(usize),
Both {
max_iterations: usize,
max_duration: Duration,
},
}Expand description
Limit the execution time of a benchmark.
Variants§
MaxDuration(Duration)
Limit by the maximal duration.
MaxIterations(usize)
Limit by the maximal number of iterations.
Both
Limit by the maximal duration and maximal number of iterations.
Implementations§
source§impl ExecutionLimit
impl ExecutionLimit
sourcepub fn from_secs_f32(secs: f32) -> Self
pub fn from_secs_f32(secs: f32) -> Self
Creates a new execution limit with the passed seconds as duration limit.
sourcepub fn max_duration(&self) -> Duration
pub fn max_duration(&self) -> Duration
Returns the duration limit or MAX if none is present.
Examples found in repository?
src/sysinfo.rs (line 256)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
pub fn benchmark_cpu(limit: ExecutionLimit) -> Throughput {
// In general the results of this benchmark are somewhat sensitive to how much
// data we hash at the time. The smaller this is the *less* B/s we can hash,
// the bigger this is the *more* B/s we can hash, up until a certain point
// where we can achieve roughly ~100% of what the hasher can do. If we'd plot
// this on a graph with the number of bytes we want to hash on the X axis
// and the speed in B/s on the Y axis then we'd essentially see it grow
// logarithmically.
//
// In practice however we might not always have enough data to hit the maximum
// possible speed that the hasher can achieve, so the size set here should be
// picked in such a way as to still measure how fast the hasher is at hashing,
// but without hitting its theoretical maximum speed.
const SIZE: usize = 32 * 1024;
let mut buffer = Vec::new();
buffer.resize(SIZE, 0x66);
let mut hash = Default::default();
let run = || -> Result<(), ()> {
clobber_slice(&mut buffer);
hash = sp_core::hashing::blake2_256(&buffer);
clobber_slice(&mut hash);
Ok(())
};
benchmark("CPU score", SIZE, limit.max_iterations(), limit.max_duration(), run)
.expect("benchmark cannot fail; qed")
}
/// A default [`ExecutionLimit`] that can be used to call [`benchmark_memory`].
pub const DEFAULT_MEMORY_EXECUTION_LIMIT: ExecutionLimit =
ExecutionLimit::Both { max_iterations: 32, max_duration: Duration::from_millis(100) };
// This benchmarks the effective `memcpy` memory bandwidth available in bytes per second.
//
// It doesn't technically measure the absolute maximum memory bandwidth available,
// but that's fine, because real code most of the time isn't optimized to take
// advantage of the full memory bandwidth either.
pub fn benchmark_memory(limit: ExecutionLimit) -> Throughput {
// Ideally this should be at least as big as the CPU's L3 cache,
// and it should be big enough so that the `memcpy` takes enough
// time to be actually measurable.
//
// As long as it's big enough increasing it further won't change
// the benchmark's results.
const SIZE: usize = 64 * 1024 * 1024;
let mut src = Vec::new();
let mut dst = Vec::new();
// Prefault the pages; we want to measure the memory bandwidth,
// not how fast the kernel can supply us with fresh memory pages.
src.resize(SIZE, 0x66);
dst.resize(SIZE, 0x77);
let run = || -> Result<(), ()> {
clobber_slice(&mut src);
clobber_slice(&mut dst);
// SAFETY: Both vectors are of the same type and of the same size,
// so copying data between them is safe.
unsafe {
// We use `memcpy` directly here since `copy_from_slice` isn't actually
// guaranteed to be turned into a `memcpy`.
libc::memcpy(dst.as_mut_ptr().cast(), src.as_ptr().cast(), SIZE);
}
clobber_slice(&mut dst);
clobber_slice(&mut src);
Ok(())
};
benchmark("memory score", SIZE, limit.max_iterations(), limit.max_duration(), run)
.expect("benchmark cannot fail; qed")
}
struct TemporaryFile {
fp: Option<File>,
path: PathBuf,
}
impl Drop for TemporaryFile {
fn drop(&mut self) {
let _ = self.fp.take();
// Remove the file.
//
// This has to be done *after* the benchmark,
// otherwise it changes the results as the data
// doesn't actually get properly flushed to the disk,
// since the file's not there anymore.
if let Err(error) = std::fs::remove_file(&self.path) {
log::warn!("Failed to remove the file used for the disk benchmark: {}", error);
}
}
}
impl Deref for TemporaryFile {
type Target = File;
fn deref(&self) -> &Self::Target {
self.fp.as_ref().expect("`fp` is None only during `drop`")
}
}
impl DerefMut for TemporaryFile {
fn deref_mut(&mut self) -> &mut Self::Target {
self.fp.as_mut().expect("`fp` is None only during `drop`")
}
}
fn rng() -> rand_pcg::Pcg64 {
rand_pcg::Pcg64::new(0xcafef00dd15ea5e5, 0xa02bdbf7bb3c0a7ac28fa16a64abf96)
}
fn random_data(size: usize) -> Vec<u8> {
let mut buffer = Vec::new();
buffer.resize(size, 0);
rng().fill(&mut buffer[..]);
buffer
}
/// A default [`ExecutionLimit`] that can be used to call [`benchmark_disk_sequential_writes`]
/// and [`benchmark_disk_random_writes`].
pub const DEFAULT_DISK_EXECUTION_LIMIT: ExecutionLimit =
ExecutionLimit::Both { max_iterations: 32, max_duration: Duration::from_millis(300) };
pub fn benchmark_disk_sequential_writes(
limit: ExecutionLimit,
directory: &Path,
) -> Result<Throughput, String> {
const SIZE: usize = 64 * 1024 * 1024;
let buffer = random_data(SIZE);
let path = directory.join(".disk_bench_seq_wr.tmp");
let fp =
File::create(&path).map_err(|error| format!("failed to create a test file: {}", error))?;
let mut fp = TemporaryFile { fp: Some(fp), path };
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
let run = || {
// Just dump everything to the disk in one go.
fp.write_all(&buffer)
.map_err(|error| format!("failed to write to the test file: {}", error))?;
// And then make sure it was actually written to disk.
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
// Rewind to the beginning for the next iteration of the benchmark.
fp.seek(SeekFrom::Start(0))
.map_err(|error| format!("failed to seek to the start of the test file: {}", error))?;
Ok(())
};
benchmark(
"disk sequential write score",
SIZE,
limit.max_iterations(),
limit.max_duration(),
run,
)
}
pub fn benchmark_disk_random_writes(
limit: ExecutionLimit,
directory: &Path,
) -> Result<Throughput, String> {
const SIZE: usize = 64 * 1024 * 1024;
let buffer = random_data(SIZE);
let path = directory.join(".disk_bench_rand_wr.tmp");
let fp =
File::create(&path).map_err(|error| format!("failed to create a test file: {}", error))?;
let mut fp = TemporaryFile { fp: Some(fp), path };
// Since we want to test random writes we need an existing file
// through which we can seek, so here we just populate it with some data.
fp.write_all(&buffer)
.map_err(|error| format!("failed to write to the test file: {}", error))?;
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
// Generate a list of random positions at which we'll issue writes.
let mut positions = Vec::with_capacity(SIZE / 4096);
{
let mut position = 0;
while position < SIZE {
positions.push(position);
position += 4096;
}
}
positions.shuffle(&mut rng());
let run = || {
for &position in &positions {
fp.seek(SeekFrom::Start(position as u64))
.map_err(|error| format!("failed to seek in the test file: {}", error))?;
// Here we deliberately only write half of the chunk since we don't
// want the OS' disk scheduler to coalesce our writes into one single
// sequential write.
//
// Also the chunk's size is deliberately exactly half of a modern disk's
// sector size to trigger an RMW cycle.
let chunk = &buffer[position..position + 2048];
fp.write_all(&chunk)
.map_err(|error| format!("failed to write to the test file: {}", error))?;
}
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
Ok(())
};
// We only wrote half of the bytes hence `SIZE / 2`.
benchmark(
"disk random write score",
SIZE / 2,
limit.max_iterations(),
limit.max_duration(),
run,
)
}
/// Benchmarks the verification speed of sr25519 signatures.
///
/// Returns the throughput in B/s by convention.
/// The values are rather small (0.4-0.8) so it is advised to convert them into KB/s.
pub fn benchmark_sr25519_verify(limit: ExecutionLimit) -> Throughput {
const INPUT_SIZE: usize = 32;
const ITERATION_SIZE: usize = 2048;
let pair = sr25519::Pair::from_string("//Alice", None).unwrap();
let mut rng = rng();
let mut msgs = Vec::new();
let mut sigs = Vec::new();
for _ in 0..ITERATION_SIZE {
let mut msg = vec![0u8; INPUT_SIZE];
rng.fill_bytes(&mut msg[..]);
sigs.push(pair.sign(&msg));
msgs.push(msg);
}
let run = || -> Result<(), String> {
for (sig, msg) in sigs.iter().zip(msgs.iter()) {
let mut ok = sr25519_verify(&sig, &msg[..], &pair.public());
clobber_value(&mut ok);
}
Ok(())
};
benchmark(
"sr25519 verification score",
INPUT_SIZE * ITERATION_SIZE,
limit.max_iterations(),
limit.max_duration(),
run,
)
.expect("sr25519 verification cannot fail; qed")
}sourcepub fn max_iterations(&self) -> usize
pub fn max_iterations(&self) -> usize
Returns the iterations limit or MAX if none is present.
Examples found in repository?
src/sysinfo.rs (line 256)
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
pub fn benchmark_cpu(limit: ExecutionLimit) -> Throughput {
// In general the results of this benchmark are somewhat sensitive to how much
// data we hash at the time. The smaller this is the *less* B/s we can hash,
// the bigger this is the *more* B/s we can hash, up until a certain point
// where we can achieve roughly ~100% of what the hasher can do. If we'd plot
// this on a graph with the number of bytes we want to hash on the X axis
// and the speed in B/s on the Y axis then we'd essentially see it grow
// logarithmically.
//
// In practice however we might not always have enough data to hit the maximum
// possible speed that the hasher can achieve, so the size set here should be
// picked in such a way as to still measure how fast the hasher is at hashing,
// but without hitting its theoretical maximum speed.
const SIZE: usize = 32 * 1024;
let mut buffer = Vec::new();
buffer.resize(SIZE, 0x66);
let mut hash = Default::default();
let run = || -> Result<(), ()> {
clobber_slice(&mut buffer);
hash = sp_core::hashing::blake2_256(&buffer);
clobber_slice(&mut hash);
Ok(())
};
benchmark("CPU score", SIZE, limit.max_iterations(), limit.max_duration(), run)
.expect("benchmark cannot fail; qed")
}
/// A default [`ExecutionLimit`] that can be used to call [`benchmark_memory`].
pub const DEFAULT_MEMORY_EXECUTION_LIMIT: ExecutionLimit =
ExecutionLimit::Both { max_iterations: 32, max_duration: Duration::from_millis(100) };
// This benchmarks the effective `memcpy` memory bandwidth available in bytes per second.
//
// It doesn't technically measure the absolute maximum memory bandwidth available,
// but that's fine, because real code most of the time isn't optimized to take
// advantage of the full memory bandwidth either.
pub fn benchmark_memory(limit: ExecutionLimit) -> Throughput {
// Ideally this should be at least as big as the CPU's L3 cache,
// and it should be big enough so that the `memcpy` takes enough
// time to be actually measurable.
//
// As long as it's big enough increasing it further won't change
// the benchmark's results.
const SIZE: usize = 64 * 1024 * 1024;
let mut src = Vec::new();
let mut dst = Vec::new();
// Prefault the pages; we want to measure the memory bandwidth,
// not how fast the kernel can supply us with fresh memory pages.
src.resize(SIZE, 0x66);
dst.resize(SIZE, 0x77);
let run = || -> Result<(), ()> {
clobber_slice(&mut src);
clobber_slice(&mut dst);
// SAFETY: Both vectors are of the same type and of the same size,
// so copying data between them is safe.
unsafe {
// We use `memcpy` directly here since `copy_from_slice` isn't actually
// guaranteed to be turned into a `memcpy`.
libc::memcpy(dst.as_mut_ptr().cast(), src.as_ptr().cast(), SIZE);
}
clobber_slice(&mut dst);
clobber_slice(&mut src);
Ok(())
};
benchmark("memory score", SIZE, limit.max_iterations(), limit.max_duration(), run)
.expect("benchmark cannot fail; qed")
}
struct TemporaryFile {
fp: Option<File>,
path: PathBuf,
}
impl Drop for TemporaryFile {
fn drop(&mut self) {
let _ = self.fp.take();
// Remove the file.
//
// This has to be done *after* the benchmark,
// otherwise it changes the results as the data
// doesn't actually get properly flushed to the disk,
// since the file's not there anymore.
if let Err(error) = std::fs::remove_file(&self.path) {
log::warn!("Failed to remove the file used for the disk benchmark: {}", error);
}
}
}
impl Deref for TemporaryFile {
type Target = File;
fn deref(&self) -> &Self::Target {
self.fp.as_ref().expect("`fp` is None only during `drop`")
}
}
impl DerefMut for TemporaryFile {
fn deref_mut(&mut self) -> &mut Self::Target {
self.fp.as_mut().expect("`fp` is None only during `drop`")
}
}
fn rng() -> rand_pcg::Pcg64 {
rand_pcg::Pcg64::new(0xcafef00dd15ea5e5, 0xa02bdbf7bb3c0a7ac28fa16a64abf96)
}
fn random_data(size: usize) -> Vec<u8> {
let mut buffer = Vec::new();
buffer.resize(size, 0);
rng().fill(&mut buffer[..]);
buffer
}
/// A default [`ExecutionLimit`] that can be used to call [`benchmark_disk_sequential_writes`]
/// and [`benchmark_disk_random_writes`].
pub const DEFAULT_DISK_EXECUTION_LIMIT: ExecutionLimit =
ExecutionLimit::Both { max_iterations: 32, max_duration: Duration::from_millis(300) };
pub fn benchmark_disk_sequential_writes(
limit: ExecutionLimit,
directory: &Path,
) -> Result<Throughput, String> {
const SIZE: usize = 64 * 1024 * 1024;
let buffer = random_data(SIZE);
let path = directory.join(".disk_bench_seq_wr.tmp");
let fp =
File::create(&path).map_err(|error| format!("failed to create a test file: {}", error))?;
let mut fp = TemporaryFile { fp: Some(fp), path };
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
let run = || {
// Just dump everything to the disk in one go.
fp.write_all(&buffer)
.map_err(|error| format!("failed to write to the test file: {}", error))?;
// And then make sure it was actually written to disk.
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
// Rewind to the beginning for the next iteration of the benchmark.
fp.seek(SeekFrom::Start(0))
.map_err(|error| format!("failed to seek to the start of the test file: {}", error))?;
Ok(())
};
benchmark(
"disk sequential write score",
SIZE,
limit.max_iterations(),
limit.max_duration(),
run,
)
}
pub fn benchmark_disk_random_writes(
limit: ExecutionLimit,
directory: &Path,
) -> Result<Throughput, String> {
const SIZE: usize = 64 * 1024 * 1024;
let buffer = random_data(SIZE);
let path = directory.join(".disk_bench_rand_wr.tmp");
let fp =
File::create(&path).map_err(|error| format!("failed to create a test file: {}", error))?;
let mut fp = TemporaryFile { fp: Some(fp), path };
// Since we want to test random writes we need an existing file
// through which we can seek, so here we just populate it with some data.
fp.write_all(&buffer)
.map_err(|error| format!("failed to write to the test file: {}", error))?;
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
// Generate a list of random positions at which we'll issue writes.
let mut positions = Vec::with_capacity(SIZE / 4096);
{
let mut position = 0;
while position < SIZE {
positions.push(position);
position += 4096;
}
}
positions.shuffle(&mut rng());
let run = || {
for &position in &positions {
fp.seek(SeekFrom::Start(position as u64))
.map_err(|error| format!("failed to seek in the test file: {}", error))?;
// Here we deliberately only write half of the chunk since we don't
// want the OS' disk scheduler to coalesce our writes into one single
// sequential write.
//
// Also the chunk's size is deliberately exactly half of a modern disk's
// sector size to trigger an RMW cycle.
let chunk = &buffer[position..position + 2048];
fp.write_all(&chunk)
.map_err(|error| format!("failed to write to the test file: {}", error))?;
}
fp.sync_all()
.map_err(|error| format!("failed to fsync the test file: {}", error))?;
Ok(())
};
// We only wrote half of the bytes hence `SIZE / 2`.
benchmark(
"disk random write score",
SIZE / 2,
limit.max_iterations(),
limit.max_duration(),
run,
)
}
/// Benchmarks the verification speed of sr25519 signatures.
///
/// Returns the throughput in B/s by convention.
/// The values are rather small (0.4-0.8) so it is advised to convert them into KB/s.
pub fn benchmark_sr25519_verify(limit: ExecutionLimit) -> Throughput {
const INPUT_SIZE: usize = 32;
const ITERATION_SIZE: usize = 2048;
let pair = sr25519::Pair::from_string("//Alice", None).unwrap();
let mut rng = rng();
let mut msgs = Vec::new();
let mut sigs = Vec::new();
for _ in 0..ITERATION_SIZE {
let mut msg = vec![0u8; INPUT_SIZE];
rng.fill_bytes(&mut msg[..]);
sigs.push(pair.sign(&msg));
msgs.push(msg);
}
let run = || -> Result<(), String> {
for (sig, msg) in sigs.iter().zip(msgs.iter()) {
let mut ok = sr25519_verify(&sig, &msg[..], &pair.public());
clobber_value(&mut ok);
}
Ok(())
};
benchmark(
"sr25519 verification score",
INPUT_SIZE * ITERATION_SIZE,
limit.max_iterations(),
limit.max_duration(),
run,
)
.expect("sr25519 verification cannot fail; qed")
}Auto Trait Implementations§
impl RefUnwindSafe for ExecutionLimit
impl Send for ExecutionLimit
impl Sync for ExecutionLimit
impl Unpin for ExecutionLimit
impl UnwindSafe for ExecutionLimit
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T, Outer> IsWrappedBy<Outer> for Twhere
Outer: AsRef<T> + AsMut<T> + From<T>,
T: From<Outer>,
impl<T, Outer> IsWrappedBy<Outer> for Twhere
Outer: AsRef<T> + AsMut<T> + From<T>,
T: From<Outer>,
source§impl<S, T> UncheckedInto<T> for Swhere
T: UncheckedFrom<S>,
impl<S, T> UncheckedInto<T> for Swhere
T: UncheckedFrom<S>,
source§fn unchecked_into(self) -> T
fn unchecked_into(self) -> T
The counterpart to
unchecked_from.