Struct rustyline_async::SharedWriter
source · [−]pub struct SharedWriter { /* private fields */ }
Expand description
Clonable object that implements Write
and AsyncWrite
and allows for sending data to the output without messing up the readline.
Trait Implementations
sourceimpl AsyncWrite for SharedWriter
impl AsyncWrite for SharedWriter
sourcefn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8]
) -> Poll<Result<usize>>
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8]
) -> Poll<Result<usize>>
Attempt to write bytes from buf
into the object. Read more
sourcefn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<()>>
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<()>>
Attempt to flush the object, ensuring that any buffered data reach their destination. Read more
sourceimpl Clone for SharedWriter
impl Clone for SharedWriter
sourceimpl Write for SharedWriter
impl Write for SharedWriter
sourcefn write(&mut self, buf: &[u8]) -> Result<usize>
fn write(&mut self, buf: &[u8]) -> Result<usize>
Write a buffer into this writer, returning how many bytes were written. Read more
sourcefn flush(&mut self) -> Result<()>
fn flush(&mut self) -> Result<()>
Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
sourcefn is_write_vectored(&self) -> bool
fn is_write_vectored(&self) -> bool
can_vector
)Determines if this Write
r has an efficient write_vectored
implementation. Read more
1.0.0 · sourcefn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>
Attempts to write an entire buffer into this writer. Read more
sourcefn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>
write_all_vectored
)Attempts to write multiple buffers into this writer. Read more
impl<'pin> Unpin for SharedWriter where
__SharedWriter<'pin>: Unpin,
Auto Trait Implementations
impl !RefUnwindSafe for SharedWriter
impl Send for SharedWriter
impl Sync for SharedWriter
impl !UnwindSafe for SharedWriter
Blanket Implementations
impl<W> AsyncWriteExt for W where
W: AsyncWrite + ?Sized,
impl<W> AsyncWriteExt for W where
W: AsyncWrite + ?Sized,
fn flush(&mut self) -> Flush<'_, Self> where
Self: Unpin,
fn flush(&mut self) -> Flush<'_, Self> where
Self: Unpin,
Creates a future which will entirely flush this AsyncWrite
. Read more
fn close(&mut self) -> Close<'_, Self> where
Self: Unpin,
fn close(&mut self) -> Close<'_, Self> where
Self: Unpin,
Creates a future which will entirely close this AsyncWrite
.
fn write(&'a mut self, buf: &'a [u8]) -> Write<'a, Self> where
Self: Unpin,
fn write(&'a mut self, buf: &'a [u8]) -> Write<'a, Self> where
Self: Unpin,
Creates a future which will write bytes from buf
into the object. Read more
fn write_vectored(
&'a mut self,
bufs: &'a [IoSlice<'a>]
) -> WriteVectored<'a, Self> where
Self: Unpin,
fn write_vectored(
&'a mut self,
bufs: &'a [IoSlice<'a>]
) -> WriteVectored<'a, Self> where
Self: Unpin,
Creates a future which will write bytes from bufs
into the object using vectored
IO operations. Read more
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ExecutableCommand for T where
T: Write + ?Sized,
impl<T> ExecutableCommand for T where
T: Write + ?Sized,
sourcefn execute(&mut self, command: impl Command) -> Result<&mut T, Error>
fn execute(&mut self, command: impl Command) -> Result<&mut T, Error>
Executes the given command directly.
The given command its ANSI escape code will be written and flushed onto Self
.
Arguments
-
The command that you want to execute directly.
Example
use std::io::{Write, stdout};
use crossterm::{Result, ExecutableCommand, style::Print};
fn main() -> Result<()> {
// will be executed directly
stdout()
.execute(Print("sum:\n".to_string()))?
.execute(Print(format!("1 + 1= {} ", 1 + 1)))?;
Ok(())
// ==== Output ====
// sum:
// 1 + 1 = 2
}
Have a look over at the Command API for more details.
Notes
- In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
- In case of Windows versions lower than 10, a direct WinAPI call will be made.
The reason for this is that Windows versions lower than 10 do not support ANSI codes,
and can therefore not be written to the given
writer
. Therefore, there is no difference between execute and queue for those old Windows versions.
sourceimpl<T> QueueableCommand for T where
T: Write + ?Sized,
impl<T> QueueableCommand for T where
T: Write + ?Sized,
sourcefn queue(&mut self, command: impl Command) -> Result<&mut T, Error>
fn queue(&mut self, command: impl Command) -> Result<&mut T, Error>
Queues the given command for further execution.
Queued commands will be executed in the following cases:
- When
flush
is called manually on the given type implementingio::Write
. - The terminal will
flush
automatically if the buffer is full. - Each line is flushed in case of
stdout
, because it is line buffered.
Arguments
-
The command that you want to queue for later execution.
Examples
use std::io::{Write, stdout};
use crossterm::{Result, QueueableCommand, style::Print};
fn main() -> Result<()> {
let mut stdout = stdout();
// `Print` will executed executed when `flush` is called.
stdout
.queue(Print("foo 1\n".to_string()))?
.queue(Print("foo 2".to_string()))?;
// some other code (no execution happening here) ...
// when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
stdout.flush()?;
Ok(())
// ==== Output ====
// foo 1
// foo 2
}
Have a look over at the Command API for more details.
Notes
- In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
- In case of Windows versions lower than 10, a direct WinAPI call will be made.
The reason for this is that Windows versions lower than 10 do not support ANSI codes,
and can therefore not be written to the given
writer
. Therefore, there is no difference between execute and queue for those old Windows versions.
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcefn clone_into(&self, target: &mut T)
fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more