Struct SVM

Source
pub struct SVM<K: Kernel> {
    pub optim_iters: usize,
    /* private fields */
}
Expand description

Support Vector Machine

Fields§

§optim_iters: usize

Number of iterations for training.

Implementations§

Source§

impl<K: Kernel> SVM<K>

Source

pub fn new(ker: K, lambda: f64) -> SVM<K>

Constructs an untrained SVM with specified kernel and lambda which determins the hardness of the margin.

§Examples
use rusty_machine::learning::svm::SVM;
use rusty_machine::learning::toolkit::kernel::SquaredExp;

let _ = SVM::new(SquaredExp::default(), 0.3);
Examples found in repository?
examples/svm-sign_learner.rs (line 32)
17fn main() {
18    println!("Sign learner sample:");
19
20    println!("Training...");
21    // Training data
22    let inputs = Matrix::new(11, 1, vec![
23                             -0.1, -2., -9., -101., -666.7,
24                             0., 0.1, 1., 11., 99., 456.7
25                             ]);
26    let targets = Vector::new(vec![
27                              -1., -1., -1., -1., -1.,
28                              1., 1., 1., 1., 1., 1.
29                              ]);
30
31    // Trainee
32    let mut svm_mod = SVM::new(HyperTan::new(100., 0.), 0.3);
33    // Our train function returns a Result<(), E>
34    svm_mod.train(&inputs, &targets).unwrap();
35
36    println!("Evaluation...");
37    let mut hits = 0;
38    let mut misses = 0;
39    // Evaluation
40    //   Note: We could pass all input values at once to the `predict` method!
41    //         Here, we use a loop just to count and print logs.
42    for n in (-1000..1000).filter(|&x| x % 100 == 0) {
43        let nf = n as f64;
44        let input = Matrix::new(1, 1, vec![nf]);
45        let out = svm_mod.predict(&input).unwrap();
46        let res = if out[0] * nf > 0. {
47            hits += 1;
48            true
49        } else if nf == 0. {
50            hits += 1;
51            true
52        } else {
53            misses += 1;
54            false
55        };
56
57        println!("{} -> {}: {}", Matrix::data(&input)[0], out[0], res);
58    }
59
60    println!("Performance report:");
61    println!("Hits: {}, Misses: {}", hits, misses);
62    let hits_f = hits as f64;
63    let total = (hits + misses) as f64;
64    println!("Accuracy: {}", (hits_f / total) * 100.);
65}

Trait Implementations§

Source§

impl<K: Debug + Kernel> Debug for SVM<K>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for SVM<SquaredExp>

The default Support Vector Machine.

The defaults are:

  • ker = SquaredExp::default()
  • lambda = 0.3
  • optim_iters = 100
Source§

fn default() -> SVM<SquaredExp>

Returns the “default value” for a type. Read more
Source§

impl<K: Kernel> SupModel<Matrix<f64>, Vector<f64>> for SVM<K>

Train the model using the Pegasos algorithm and predict the model output from new data.

Source§

fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>>

Predict output from inputs.
Source§

fn train( &mut self, inputs: &Matrix<f64>, targets: &Vector<f64>, ) -> LearningResult<()>

Train the model using inputs and targets.

Auto Trait Implementations§

§

impl<K> Freeze for SVM<K>
where K: Freeze,

§

impl<K> RefUnwindSafe for SVM<K>
where K: RefUnwindSafe,

§

impl<K> Send for SVM<K>
where K: Send,

§

impl<K> Sync for SVM<K>
where K: Sync,

§

impl<K> Unpin for SVM<K>
where K: Unpin,

§

impl<K> UnwindSafe for SVM<K>
where K: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.