GaussianProcess

Struct GaussianProcess 

Source
pub struct GaussianProcess<T: Kernel, U: MeanFunc> {
    pub noise: f64,
    /* private fields */
}
Expand description

Gaussian Process struct

Gaussian process with generic kernel and deterministic mean function. Can be used for gaussian process regression with noise. Currently does not support classification.

Fields§

§noise: f64

The observation noise of the GP.

Implementations§

Source§

impl<T: Kernel, U: MeanFunc> GaussianProcess<T, U>

Source

pub fn new(ker: T, mean: U, noise: f64) -> GaussianProcess<T, U>

Construct a new Gaussian Process.

§Examples
use rusty_machine::learning::gp;
use rusty_machine::learning::toolkit::kernel;

let ker = kernel::SquaredExp::default();
let mean = gp::ConstMean::default();
let gaussp = gp::GaussianProcess::new(ker, mean, 1e-3f64);
Source§

impl<T: Kernel, U: MeanFunc> GaussianProcess<T, U>

Source

pub fn get_posterior( &self, inputs: &Matrix<f64>, ) -> LearningResult<(Vector<f64>, Matrix<f64>)>

Compute the posterior distribution [UNSTABLE]

Requires the model to be trained first.

Outputs the posterior mean and covariance matrix.

Trait Implementations§

Source§

impl<T: Debug + Kernel, U: Debug + MeanFunc> Debug for GaussianProcess<T, U>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for GaussianProcess<SquaredExp, ConstMean>

Construct a default Gaussian Process

The defaults are:

  • Squared Exponential kernel.
  • Zero-mean function.
  • Zero noise.

Note that zero noise can often lead to numerical instability. A small value for the noise may be a better alternative.

Source§

fn default() -> GaussianProcess<SquaredExp, ConstMean>

Returns the “default value” for a type. Read more
Source§

impl<T: Kernel, U: MeanFunc> SupModel<Matrix<f64>, Vector<f64>> for GaussianProcess<T, U>

Source§

fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>>

Predict output from inputs.

Source§

fn train( &mut self, inputs: &Matrix<f64>, targets: &Vector<f64>, ) -> LearningResult<()>

Train the model using data and outputs.

Auto Trait Implementations§

§

impl<T, U> Freeze for GaussianProcess<T, U>
where T: Freeze, U: Freeze,

§

impl<T, U> RefUnwindSafe for GaussianProcess<T, U>

§

impl<T, U> Send for GaussianProcess<T, U>
where T: Send, U: Send,

§

impl<T, U> Sync for GaussianProcess<T, U>
where T: Sync, U: Sync,

§

impl<T, U> Unpin for GaussianProcess<T, U>
where T: Unpin, U: Unpin,

§

impl<T, U> UnwindSafe for GaussianProcess<T, U>
where T: UnwindSafe, U: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.