pub struct LinRegressor { /* private fields */ }Expand description
Linear Regression Model.
Contains option for optimized parameter.
Implementations§
Source§impl LinRegressor
impl LinRegressor
Sourcepub fn parameters(&self) -> Option<&Vector<f64>>
pub fn parameters(&self) -> Option<&Vector<f64>>
Get the parameters from the model.
Returns an option that is None if the model has not been trained.
Source§impl LinRegressor
impl LinRegressor
Sourcepub fn train_with_optimization(
&mut self,
inputs: &Matrix<f64>,
targets: &Vector<f64>,
)
pub fn train_with_optimization( &mut self, inputs: &Matrix<f64>, targets: &Vector<f64>, )
Train the linear regressor using Gradient Descent.
§Examples
use rusty_machine::learning::lin_reg::LinRegressor;
use rusty_machine::learning::SupModel;
use rusty_machine::linalg::Matrix;
use rusty_machine::linalg::Vector;
let inputs = Matrix::new(4,1,vec![1.0,3.0,5.0,7.0]);
let targets = Vector::new(vec![1.,5.,9.,13.]);
let mut lin_mod = LinRegressor::default();
// Train the model
lin_mod.train_with_optimization(&inputs, &targets);
// Now we'll predict a new point
let new_point = Matrix::new(1,1,vec![10.]);
let _ = lin_mod.predict(&new_point).unwrap();Trait Implementations§
Source§impl Debug for LinRegressor
impl Debug for LinRegressor
Source§impl Default for LinRegressor
impl Default for LinRegressor
Source§fn default() -> LinRegressor
fn default() -> LinRegressor
Returns the “default value” for a type. Read more
Source§impl Optimizable for LinRegressor
impl Optimizable for LinRegressor
Source§impl SupModel<Matrix<f64>, Vector<f64>> for LinRegressor
impl SupModel<Matrix<f64>, Vector<f64>> for LinRegressor
Source§fn train(
&mut self,
inputs: &Matrix<f64>,
targets: &Vector<f64>,
) -> LearningResult<()>
fn train( &mut self, inputs: &Matrix<f64>, targets: &Vector<f64>, ) -> LearningResult<()>
Train the linear regression model.
Takes training data and output values as input.
§Examples
use rusty_machine::learning::lin_reg::LinRegressor;
use rusty_machine::linalg::Matrix;
use rusty_machine::linalg::Vector;
use rusty_machine::learning::SupModel;
let mut lin_mod = LinRegressor::default();
let inputs = Matrix::new(3,1, vec![2.0, 3.0, 4.0]);
let targets = Vector::new(vec![5.0, 6.0, 7.0]);
lin_mod.train(&inputs, &targets).unwrap();Auto Trait Implementations§
impl Freeze for LinRegressor
impl RefUnwindSafe for LinRegressor
impl Send for LinRegressor
impl Sync for LinRegressor
impl Unpin for LinRegressor
impl UnwindSafe for LinRegressor
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more