LogisticRegressor

Struct LogisticRegressor 

Source
pub struct LogisticRegressor<A>{ /* private fields */ }
Expand description

Logistic Regression Model.

Contains option for optimized parameter.

Implementations§

Source§

impl<A: OptimAlgorithm<BaseLogisticRegressor>> LogisticRegressor<A>

Source

pub fn new(alg: A) -> LogisticRegressor<A>

Constructs untrained logistic regression model.

§Examples
use rusty_machine::learning::logistic_reg::LogisticRegressor;
use rusty_machine::learning::optim::grad_desc::GradientDesc;

let gd = GradientDesc::default();
let mut logistic_mod = LogisticRegressor::new(gd);
Source

pub fn parameters(&self) -> Option<&Vector<f64>>

Get the parameters from the model.

Returns an option that is None if the model has not been trained.

Trait Implementations§

Source§

impl<A> Debug for LogisticRegressor<A>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for LogisticRegressor<GradientDesc>

Constructs a default Logistic Regression model using standard gradient descent.

Source§

fn default() -> LogisticRegressor<GradientDesc>

Returns the “default value” for a type. Read more
Source§

impl<A> SupModel<Matrix<f64>, Vector<f64>> for LogisticRegressor<A>

Source§

fn train( &mut self, inputs: &Matrix<f64>, targets: &Vector<f64>, ) -> LearningResult<()>

Train the logistic regression model.

Takes training data and output values as input.

§Examples
use rusty_machine::learning::logistic_reg::LogisticRegressor;
use rusty_machine::linalg::Matrix;
use rusty_machine::linalg::Vector;
use rusty_machine::learning::SupModel;

let mut logistic_mod = LogisticRegressor::default();
let inputs = Matrix::new(3,2, vec![1.0, 2.0, 1.0, 3.0, 1.0, 4.0]);
let targets = Vector::new(vec![5.0, 6.0, 7.0]);

logistic_mod.train(&inputs, &targets).unwrap();
Source§

fn predict(&self, inputs: &Matrix<f64>) -> LearningResult<Vector<f64>>

Predict output value from input data.

Model must be trained before prediction can be made.

Auto Trait Implementations§

§

impl<A> Freeze for LogisticRegressor<A>
where A: Freeze,

§

impl<A> RefUnwindSafe for LogisticRegressor<A>
where A: RefUnwindSafe,

§

impl<A> Send for LogisticRegressor<A>
where A: Send,

§

impl<A> Sync for LogisticRegressor<A>
where A: Sync,

§

impl<A> Unpin for LogisticRegressor<A>
where A: Unpin,

§

impl<A> UnwindSafe for LogisticRegressor<A>
where A: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.