Struct rusty_machine::learning::k_means::KMeansClassifier
[−]
[src]
pub struct KMeansClassifier {
pub iters: usize,
pub k: usize,
pub centroids: Option<Matrix<f64>>,
pub init_algorithm: InitAlgorithm,
}K-Means Classification model.
Contains option for centroids. Specifies iterations and number of classes.
Fields
iters: usize
Max iterations of algorithm to run.
k: usize
The number of classes.
centroids: Option<Matrix<f64>>
The fitted centroids .
init_algorithm: InitAlgorithm
The initial algorithm to use.
Methods
impl KMeansClassifier[src]
fn new(k: usize) -> KMeansClassifier
Constructs untrained k-means classifier model.
Requires number of classes to be specified. Defaults to 100 iterations and kmeans++ initialization.
Examples
use rusty_machine::learning::k_means::KMeansClassifier; let model = KMeansClassifier::new(5);
fn new_specified(k: usize, iters: usize, algo: InitAlgorithm) -> KMeansClassifier
Constructs untrained k-means classifier model.
Requires number of classes, number of iterations, and the initialization algorithm to use.
Examples
use rusty_machine::learning::k_means::KMeansClassifier; use rusty_machine::learning::k_means::InitAlgorithm; let model = KMeansClassifier::new_specified(5, 42, InitAlgorithm::Forgy);
fn k(&self) -> usize
Get the number of classes
fn iters(&self) -> usize
Get the number of iterations
fn init_algorithm(&self) -> InitAlgorithm
Get the initialization algorithm