Struct rusty_machine::learning::logistic_reg::LogisticRegressor
[−]
[src]
pub struct LogisticRegressor {
// some fields omitted
}Logistic Regression Model.
Contains option for optimized parameter.
Methods
impl LogisticRegressor[src]
fn new(gd: GradientDesc) -> LogisticRegressor
Constructs untrained logistic regression model.
Examples
use rusty_machine::learning::logistic_reg::LogisticRegressor; use rusty_machine::learning::optim::grad_desc::GradientDesc; let gd = GradientDesc::default(); let mut logistic_mod = LogisticRegressor::new(gd);
fn parameters(&self) -> Option<Vector<f64>>
Get the parameters from the model.
Returns an option that is None if the model has not been trained.
Trait Implementations
impl Default for LogisticRegressor[src]
fn default() -> LogisticRegressor
Returns the "default value" for a type. Read more
impl SupModel<Matrix<f64>, Vector<f64>> for LogisticRegressor[src]
fn train(&mut self, inputs: &Matrix<f64>, targets: &Vector<f64>)
Train the logistic regression model.
Takes training data and output values as input.
Examples
use rusty_machine::learning::logistic_reg::LogisticRegressor; use rusty_machine::linalg::matrix::Matrix; use rusty_machine::linalg::vector::Vector; use rusty_machine::learning::SupModel; let mut logistic_mod = LogisticRegressor::default(); let inputs = Matrix::new(3,2, vec![1.0, 2.0, 1.0, 3.0, 1.0, 4.0]); let targets = Vector::new(vec![5.0, 6.0, 7.0]); logistic_mod.train(&inputs, &targets);
fn predict(&self, inputs: &Matrix<f64>) -> Vector<f64>
Predict output value from input data.
Model must be trained before prediction can be made.