Struct rusty_machine::learning::lin_reg::LinRegressor
[−]
[src]
pub struct LinRegressor {
// some fields omitted
}Linear Regression Model.
Contains option for optimized parameter.
Methods
impl LinRegressor[src]
fn new() -> LinRegressor
Constructs untrained linear regression model.
Examples
use rusty_machine::learning::lin_reg::LinRegressor; let mut lin_mod = LinRegressor::new();
fn parameters(&self) -> Option<Vector<f64>>
Get the parameters from the model.
Returns an option that is None if the model has not been trained.
Trait Implementations
impl SupModel<Matrix<f64>, Vector<f64>> for LinRegressor[src]
fn train(&mut self, inputs: &Matrix<f64>, targets: &Vector<f64>)
Train the linear regression model.
Takes training data and output values as input.
Examples
use rusty_machine::learning::lin_reg::LinRegressor; use rusty_machine::linalg::matrix::Matrix; use rusty_machine::linalg::vector::Vector; use rusty_machine::learning::SupModel; let mut lin_mod = LinRegressor::new(); let inputs = Matrix::new(3,2, vec![1.0, 2.0, 1.0, 3.0, 1.0, 4.0]); let targets = Vector::new(vec![5.0, 6.0, 7.0]); lin_mod.train(&inputs, &targets);
fn predict(&self, inputs: &Matrix<f64>) -> Vector<f64>
Predict output value from input data.
Model must be trained before prediction can be made.