Struct rusty_machine::learning::nnet::NeuralNet
[−]
[src]
pub struct NeuralNet<'a> {
pub weights: Vec<f64>,
// some fields omitted
}Neural Network struct
Fields
weights: Vec<f64>
Methods
impl<'a> NeuralNet<'a>[src]
fn new(layer_sizes: &[usize]) -> NeuralNet
Create a new neural network with the specified layer sizes.
The layer sizes slice should include the input, hidden layers, and output layer sizes.
Currently defaults to simple batch Gradient Descent for optimization.
Examples
use rusty_machine::learning::nnet::NeuralNet; // Create a neural net with 4 layers, 3 neurons in each. let layers = &[3; 4]; let mut a = NeuralNet::new(layers);
fn get_net_weights(&self, idx: usize) -> Matrix<f64>
Gets matrix of weights between specified layer and forward layer.
Examples
use rusty_machine::learning::nnet::NeuralNet; // Create a neural net with 4 layers, 3 neurons in each. let layers = &[3; 4]; let mut a = NeuralNet::new(layers); let w = &a.get_net_weights(2); assert_eq!(w.rows(), 4); assert_eq!(w.cols(), 3);
Trait Implementations
impl<'a> Optimizable for NeuralNet<'a>[src]
type Data = Matrix<f64>
type Target = Matrix<f64>
fn compute_grad(&self, params: &[f64], data: &Matrix<f64>, target: &Matrix<f64>) -> Vec<f64>
Compute the gradient of the neural network.