Struct rusty_ai::forests::regressor::RandomForestRegressor
source · pub struct RandomForestRegressor<T: RealNumber> { /* private fields */ }Implementations§
source§impl<T: RealNumber> RandomForestRegressor<T>
impl<T: RealNumber> RandomForestRegressor<T>
sourcepub fn new() -> Self
pub fn new() -> Self
Creates a new RandomForestRegressor with default parameters.
§Returns
A new instance of the RandomForestRegressor.
sourcepub fn with_params(
num_trees: Option<usize>,
min_samples_split: Option<u16>,
max_depth: Option<u16>,
sample_size: Option<usize>
) -> Result<Self, Box<dyn Error>>
pub fn with_params( num_trees: Option<usize>, min_samples_split: Option<u16>, max_depth: Option<u16>, sample_size: Option<usize> ) -> Result<Self, Box<dyn Error>>
Creates a new RandomForestRegressor with the specified parameters.
§Arguments
num_trees- The number of trees in the random forest. If not specified, the default value is 3.min_samples_split- The minimum number of samples required to split an internal node. If not specified, the default value is 2.max_depth- The maximum depth of the decision trees. If not specified, there is no maximum depth.sample_size- The size of the random subsets of the training data used to train each tree. If not specified, the default value is calculated as the total number of samples divided by the number of trees.
§Returns
A Result containing the RandomForestRegressor if the parameters are valid, or a Box<dyn Error> if an error occurs.
sourcepub fn set_trees(&mut self, trees: Vec<DecisionTreeRegressor<T>>)
pub fn set_trees(&mut self, trees: Vec<DecisionTreeRegressor<T>>)
Sets the decision trees for the random forest regressor.
§Arguments
trees- A vector ofDecisionTreeRegressorinstances.
sourcepub fn set_min_samples_split(
&mut self,
min_samples_split: u16
) -> Result<(), Box<dyn Error>>
pub fn set_min_samples_split( &mut self, min_samples_split: u16 ) -> Result<(), Box<dyn Error>>
sourcepub fn trees(&self) -> &Vec<DecisionTreeRegressor<T>>
pub fn trees(&self) -> &Vec<DecisionTreeRegressor<T>>
Returns a reference to the decision trees in the random forest regressor.
sourcepub fn sample_size(&self) -> Option<usize>
pub fn sample_size(&self) -> Option<usize>
Returns the sample size for each tree in the random forest regressor.
sourcepub fn min_samples_split(&self) -> u16
pub fn min_samples_split(&self) -> u16
Returns the minimum number of samples required to split an internal node in each decision tree.
sourcepub fn max_depth(&self) -> Option<u16>
pub fn max_depth(&self) -> Option<u16>
Returns the maximum depth of each decision tree in the random forest regressor.
sourcepub fn fit(
&mut self,
dataset: &Dataset<T, T>,
seed: Option<u64>
) -> Result<String, Box<dyn Error>>
pub fn fit( &mut self, dataset: &Dataset<T, T>, seed: Option<u64> ) -> Result<String, Box<dyn Error>>
Fits the random forest regressor to the given dataset.
§Arguments
dataset- The dataset to fit the random forest regressor to.seed- The seed for the random number generator. UseNonefor a random seed.
§Returns
Returns a string indicating the completion of the fitting process if successful, otherwise returns an error.
Trait Implementations§
source§impl<T: Clone + RealNumber> Clone for RandomForestRegressor<T>
impl<T: Clone + RealNumber> Clone for RandomForestRegressor<T>
source§fn clone(&self) -> RandomForestRegressor<T>
fn clone(&self) -> RandomForestRegressor<T>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl<T: Debug + RealNumber> Debug for RandomForestRegressor<T>
impl<T: Debug + RealNumber> Debug for RandomForestRegressor<T>
source§impl<T: RealNumber> Default for RandomForestRegressor<T>
impl<T: RealNumber> Default for RandomForestRegressor<T>
source§impl<T: RealNumber> RegressionMetrics<T> for RandomForestRegressor<T>
impl<T: RealNumber> RegressionMetrics<T> for RandomForestRegressor<T>
source§fn mse(
&self,
y_true: &DVector<T>,
y_pred: &DVector<T>
) -> Result<T, Box<dyn Error>>
fn mse( &self, y_true: &DVector<T>, y_pred: &DVector<T> ) -> Result<T, Box<dyn Error>>
Auto Trait Implementations§
impl<T> RefUnwindSafe for RandomForestRegressor<T>where
T: RefUnwindSafe,
impl<T> Send for RandomForestRegressor<T>
impl<T> Sync for RandomForestRegressor<T>
impl<T> Unpin for RandomForestRegressor<T>where
T: Unpin,
impl<T> UnwindSafe for RandomForestRegressor<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.