Struct rusty_ai::forests::classifier::RandomForestClassifier
source · pub struct RandomForestClassifier<XT: Number, YT: WholeNumber> { /* private fields */ }Implementations§
source§impl<XT: Number, YT: WholeNumber> RandomForestClassifier<XT, YT>
impl<XT: Number, YT: WholeNumber> RandomForestClassifier<XT, YT>
pub fn new() -> Self
pub fn with_params( num_trees: Option<usize>, min_samples_split: Option<u16>, max_depth: Option<u16>, criterion: Option<String>, sample_size: Option<usize> ) -> Result<Self, Box<dyn Error>>
pub fn set_trees(&mut self, trees: Vec<DecisionTreeClassifier<XT, YT>>)
pub fn set_num_trees(&mut self, num_trees: usize) -> Result<(), Box<dyn Error>>
pub fn set_sample_size( &mut self, sample_size: Option<usize> ) -> Result<(), Box<dyn Error>>
pub fn set_min_samples_split( &mut self, min_samples_split: u16 ) -> Result<(), Box<dyn Error>>
pub fn set_max_depth( &mut self, max_depth: Option<u16> ) -> Result<(), Box<dyn Error>>
pub fn set_criterion(&mut self, criterion: String) -> Result<(), Box<dyn Error>>
pub fn trees(&self) -> &Vec<DecisionTreeClassifier<XT, YT>>
pub fn num_trees(&self) -> usize
pub fn sample_size(&self) -> Option<usize>
pub fn min_samples_split(&self) -> u16
pub fn max_depth(&self) -> Option<u16>
pub fn criterion(&self) -> &String
pub fn fit( &mut self, dataset: &Dataset<XT, YT>, seed: Option<u64> ) -> Result<String, Box<dyn Error>>
pub fn predict( &self, features: &DMatrix<XT> ) -> Result<DVector<YT>, Box<dyn Error>>
Trait Implementations§
source§impl<XT: Clone + Number, YT: Clone + WholeNumber> Clone for RandomForestClassifier<XT, YT>
impl<XT: Clone + Number, YT: Clone + WholeNumber> Clone for RandomForestClassifier<XT, YT>
source§fn clone(&self) -> RandomForestClassifier<XT, YT>
fn clone(&self) -> RandomForestClassifier<XT, YT>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl<XT: Debug + Number, YT: Debug + WholeNumber> Debug for RandomForestClassifier<XT, YT>
impl<XT: Debug + Number, YT: Debug + WholeNumber> Debug for RandomForestClassifier<XT, YT>
source§impl<XT: Number, YT: WholeNumber> Default for RandomForestClassifier<XT, YT>
impl<XT: Number, YT: WholeNumber> Default for RandomForestClassifier<XT, YT>
Auto Trait Implementations§
impl<XT, YT> RefUnwindSafe for RandomForestClassifier<XT, YT>where
XT: RefUnwindSafe,
YT: RefUnwindSafe,
impl<XT, YT> Send for RandomForestClassifier<XT, YT>
impl<XT, YT> Sync for RandomForestClassifier<XT, YT>
impl<XT, YT> Unpin for RandomForestClassifier<XT, YT>where
XT: Unpin,
impl<XT, YT> UnwindSafe for RandomForestClassifier<XT, YT>where
XT: UnwindSafe,
YT: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.