Struct rustfft::algorithm::GoodThomasAlgorithm
[−]
[src]
pub struct GoodThomasAlgorithm<T> { /* fields omitted */ }Implementation of the Good-Thomas Algorithm (AKA Prime Factor Algorithm)
This algorithm factors a size n FFT into n1 * n2, where GCD(n1, n2) == 1
Conceptually, this algorithm is very similar to the Mixed-Radix FFT, except because GCD(n1, n2) == 1 we can do some number theory trickery to reduce the number of floating-point multiplications and additions
// Computes a forward FFT of size 1200, using the Good-Thomas Algorithm use rustfft::algorithm::GoodThomasAlgorithm; use rustfft::{FFT, FFTplanner}; use rustfft::num_complex::Complex; use rustfft::num_traits::Zero; let mut input: Vec<Complex<f32>> = vec![Zero::zero(); 1200]; let mut output: Vec<Complex<f32>> = vec![Zero::zero(); 1200]; // we need to find an n1 and n2 such that n1 * n2 == 1200 and GCD(n1, n2) == 1 // n1 = 48 and n2 = 25 satisfies this let mut planner = FFTplanner::new(false); let inner_fft_n1 = planner.plan_fft(48); let inner_fft_n2 = planner.plan_fft(25); // the good-thomas FFT length will be inner_fft_n1.len() * inner_fft_n2.len() = 1200 let fft = GoodThomasAlgorithm::new(inner_fft_n1, inner_fft_n2); fft.process(&mut input, &mut output);
Methods
impl<T: FFTnum> GoodThomasAlgorithm<T>[src]
fn new(n1_fft: Arc<FFT<T>>, n2_fft: Arc<FFT<T>>) -> Self
Creates a FFT instance which will process inputs/outputs of size n1_fft.len() * n2_fft.len()
GCD(n1.len(), n2.len()) must be equal to 1
Trait Implementations
impl<T: FFTnum> FFT<T> for GoodThomasAlgorithm<T>[src]
fn process(&self, input: &mut [Complex<T>], output: &mut [Complex<T>])
Computes an FFT on the input buffer and places the result in the output buffer. Read more
fn process_multi(&self, input: &mut [Complex<T>], output: &mut [Complex<T>])
Divides the input and output buffers into self.len() chunks, then computes an FFT on each chunk. Read more
impl<T> Length for GoodThomasAlgorithm<T>[src]
impl<T> IsInverse for GoodThomasAlgorithm<T>[src]
fn is_inverse(&self) -> bool
Returns false if this instance computes forward FFTs, true for inverse FFTs