Trait rust_rpg_toolkit::prelude::Sub 1.0.0[−][src]
Expand description
The subtraction operator -
.
Note that Rhs
is Self
by default, but this is not mandatory. For
example, std::time::SystemTime
implements Sub<Duration>
, which permits
operations of the form SystemTime = SystemTime - Duration
.
Examples
Sub
tractable points
use std::ops::Sub;
#[derive(Debug, Copy, Clone, PartialEq)]
struct Point {
x: i32,
y: i32,
}
impl Sub for Point {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
Self {
x: self.x - other.x,
y: self.y - other.y,
}
}
}
assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 },
Point { x: 1, y: 0 });
Implementing Sub
with generics
Here is an example of the same Point
struct implementing the Sub
trait
using generics.
use std::ops::Sub;
#[derive(Debug, PartialEq)]
struct Point<T> {
x: T,
y: T,
}
// Notice that the implementation uses the associated type `Output`.
impl<T: Sub<Output = T>> Sub for Point<T> {
type Output = Self;
fn sub(self, other: Self) -> Self::Output {
Point {
x: self.x - other.x,
y: self.y - other.y,
}
}
}
assert_eq!(Point { x: 2, y: 3 } - Point { x: 1, y: 0 },
Point { x: 1, y: 3 });
Associated Types
Required methods
Implementations on Foreign Types
type Output = SystemTime
Returns the difference of self
and rhs
as a new HashSet<T, S>
.
Examples
use std::collections::HashSet;
let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();
let set = &a - &b;
let mut i = 0;
let expected = [1, 2];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
type Output = <Saturating<i128> as Sub<Saturating<i128>>>::Output
pub fn sub(
self,
other: Saturating<i128>
) -> <Saturating<i128> as Sub<Saturating<i128>>>::Output
type Output = <Saturating<i128> as Sub<Saturating<i128>>>::Output
pub fn sub(
self,
other: &Saturating<i128>
) -> <Saturating<i128> as Sub<Saturating<i128>>>::Output
type Output = Saturating<u16>
type Output = <Saturating<i32> as Sub<Saturating<i32>>>::Output
type Output = <Saturating<i32> as Sub<Saturating<i32>>>::Output
pub fn sub(
self,
other: &Saturating<i32>
) -> <Saturating<i32> as Sub<Saturating<i32>>>::Output
type Output = <Saturating<i16> as Sub<Saturating<i16>>>::Output
pub fn sub(
self,
other: &Saturating<i16>
) -> <Saturating<i16> as Sub<Saturating<i16>>>::Output
type Output = <Saturating<usize> as Sub<Saturating<usize>>>::Output
pub fn sub(
self,
other: &Saturating<usize>
) -> <Saturating<usize> as Sub<Saturating<usize>>>::Output
type Output = <Saturating<u32> as Sub<Saturating<u32>>>::Output
type Output = Saturating<i8>
type Output = <Saturating<u16> as Sub<Saturating<u16>>>::Output
type Output = <Saturating<u8> as Sub<Saturating<u8>>>::Output
type Output = <Saturating<isize> as Sub<Saturating<isize>>>::Output
pub fn sub(
self,
other: &Saturating<isize>
) -> <Saturating<isize> as Sub<Saturating<isize>>>::Output
type Output = Saturating<i128>
type Output = <Saturating<i16> as Sub<Saturating<i16>>>::Output
pub fn sub(
self,
other: &Saturating<i16>
) -> <Saturating<i16> as Sub<Saturating<i16>>>::Output
type Output = Saturating<i16>
type Output = Saturating<isize>
type Output = <Saturating<u64> as Sub<Saturating<u64>>>::Output
pub fn sub(
self,
other: &Saturating<u64>
) -> <Saturating<u64> as Sub<Saturating<u64>>>::Output
type Output = Saturating<u32>
type Output = <Saturating<u16> as Sub<Saturating<u16>>>::Output
pub fn sub(
self,
other: &Saturating<u16>
) -> <Saturating<u16> as Sub<Saturating<u16>>>::Output
type Output = Saturating<u64>
type Output = <Saturating<usize> as Sub<Saturating<usize>>>::Output
pub fn sub(
self,
other: &Saturating<usize>
) -> <Saturating<usize> as Sub<Saturating<usize>>>::Output
type Output = <Saturating<u64> as Sub<Saturating<u64>>>::Output
pub fn sub(
self,
other: &Saturating<u64>
) -> <Saturating<u64> as Sub<Saturating<u64>>>::Output
type Output = Saturating<u128>
type Output = <Saturating<i128> as Sub<Saturating<i128>>>::Output
pub fn sub(
self,
other: &Saturating<i128>
) -> <Saturating<i128> as Sub<Saturating<i128>>>::Output
type Output = <Saturating<u32> as Sub<Saturating<u32>>>::Output
pub fn sub(
self,
other: &Saturating<u32>
) -> <Saturating<u32> as Sub<Saturating<u32>>>::Output
type Output = <Saturating<isize> as Sub<Saturating<isize>>>::Output
pub fn sub(
self,
other: Saturating<isize>
) -> <Saturating<isize> as Sub<Saturating<isize>>>::Output
type Output = Saturating<u8>
type Output = <Saturating<u64> as Sub<Saturating<u64>>>::Output
type Output = <Saturating<i8> as Sub<Saturating<i8>>>::Output
type Output = <Saturating<u8> as Sub<Saturating<u8>>>::Output
type Output = <Saturating<i16> as Sub<Saturating<i16>>>::Output
type Output = <Saturating<i64> as Sub<Saturating<i64>>>::Output
pub fn sub(
self,
other: &Saturating<i64>
) -> <Saturating<i64> as Sub<Saturating<i64>>>::Output
type Output = Saturating<usize>
type Output = <Saturating<i64> as Sub<Saturating<i64>>>::Output
type Output = <Saturating<i8> as Sub<Saturating<i8>>>::Output
type Output = <Saturating<i32> as Sub<Saturating<i32>>>::Output
pub fn sub(
self,
other: &Saturating<i32>
) -> <Saturating<i32> as Sub<Saturating<i32>>>::Output
type Output = <Saturating<i64> as Sub<Saturating<i64>>>::Output
pub fn sub(
self,
other: &Saturating<i64>
) -> <Saturating<i64> as Sub<Saturating<i64>>>::Output
type Output = Saturating<i32>
type Output = <Saturating<usize> as Sub<Saturating<usize>>>::Output
pub fn sub(
self,
other: Saturating<usize>
) -> <Saturating<usize> as Sub<Saturating<usize>>>::Output
type Output = <Saturating<u32> as Sub<Saturating<u32>>>::Output
pub fn sub(
self,
other: &Saturating<u32>
) -> <Saturating<u32> as Sub<Saturating<u32>>>::Output
type Output = <Saturating<u128> as Sub<Saturating<u128>>>::Output
pub fn sub(
self,
other: &Saturating<u128>
) -> <Saturating<u128> as Sub<Saturating<u128>>>::Output
type Output = <Saturating<u128> as Sub<Saturating<u128>>>::Output
pub fn sub(
self,
other: Saturating<u128>
) -> <Saturating<u128> as Sub<Saturating<u128>>>::Output
type Output = <Saturating<isize> as Sub<Saturating<isize>>>::Output
pub fn sub(
self,
other: &Saturating<isize>
) -> <Saturating<isize> as Sub<Saturating<isize>>>::Output
type Output = <Saturating<u8> as Sub<Saturating<u8>>>::Output
type Output = <Saturating<u128> as Sub<Saturating<u128>>>::Output
pub fn sub(
self,
other: &Saturating<u128>
) -> <Saturating<u128> as Sub<Saturating<u128>>>::Output
type Output = Saturating<i64>
type Output = <Saturating<i8> as Sub<Saturating<i8>>>::Output
type Output = <Saturating<u16> as Sub<Saturating<u16>>>::Output
pub fn sub(
self,
other: &Saturating<u16>
) -> <Saturating<u16> as Sub<Saturating<u16>>>::Output
Returns the difference of self
and rhs
as a new BTreeSet<T>
.
Examples
use std::collections::BTreeSet;
let a: BTreeSet<_> = vec![1, 2, 3].into_iter().collect();
let b: BTreeSet<_> = vec![3, 4, 5].into_iter().collect();
let result = &a - &b;
let result_vec: Vec<_> = result.into_iter().collect();
assert_eq!(result_vec, [1, 2]);
impl Sub<Transformations> for Transformations
impl Sub<Transformations> for Transformations
pub fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
pub fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>
Returns the difference of self
and rhs
as a new HashSet<T, S>
.
Examples
use hashbrown::HashSet;
let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();
let set = &a - &b;
let mut i = 0;
let expected = [1, 2];
for x in &set {
assert!(expected.contains(x));
i += 1;
}
assert_eq!(i, expected.len());
type Output = HashSet<T, S>
impl Sub<Point> for Point
impl Sub<Point> for Point
Support subtracting a point from a point
Support subtracting an int from a point
impl Sub<Point3> for Point3
impl Sub<Point3> for Point3
Support subtracting a point from a point
Support subtracting an int from a point
impl<'_> Sub<&'_ i8x16> for i8x16
impl<'_> Sub<&'_ i8x16> for i8x16
impl Sub<i64x2> for i64x2
impl Sub<i64x2> for i64x2
impl Sub<f64x4> for f64x4
impl Sub<f64x4> for f64x4
impl Sub<u64x2> for u64x2
impl Sub<u64x2> for u64x2
impl Sub<f64x2> for f64x2
impl Sub<f64x2> for f64x2
impl<'_> Sub<&'_ u32x4> for u32x4
impl<'_> Sub<&'_ u32x4> for u32x4
impl<'_> Sub<&'_ i16x8> for i16x8
impl<'_> Sub<&'_ i16x8> for i16x8
impl Sub<u64x4> for u64x4
impl Sub<u64x4> for u64x4
impl Sub<i8x16> for i8x16
impl Sub<i8x16> for i8x16
impl Sub<f32x8> for f32x8
impl Sub<f32x8> for f32x8
impl<'_> Sub<&'_ i64x2> for i64x2
impl<'_> Sub<&'_ i64x2> for i64x2
impl<'_> Sub<&'_ f32x8> for f32x8
impl<'_> Sub<&'_ f32x8> for f32x8
impl<'_> Sub<&'_ f32x4> for f32x4
impl<'_> Sub<&'_ f32x4> for f32x4
impl<'_> Sub<&'_ f64x2> for f64x2
impl<'_> Sub<&'_ f64x2> for f64x2
impl<'_> Sub<&'_ i32x4> for i32x4
impl<'_> Sub<&'_ i32x4> for i32x4
impl Sub<i64x4> for i64x4
impl Sub<i64x4> for i64x4
impl Sub<i32x4> for i32x4
impl Sub<i32x4> for i32x4
impl Sub<i32x8> for i32x8
impl Sub<i32x8> for i32x8
impl<'_> Sub<&'_ f64x4> for f64x4
impl<'_> Sub<&'_ f64x4> for f64x4
impl<'_> Sub<&'_ u8x16> for u8x16
impl<'_> Sub<&'_ u8x16> for u8x16
impl<'_> Sub<&'_ i8x32> for i8x32
impl<'_> Sub<&'_ i8x32> for i8x32
impl Sub<u8x16> for u8x16
impl Sub<u8x16> for u8x16
impl Sub<u16x8> for u16x8
impl Sub<u16x8> for u16x8
impl Sub<i16x8> for i16x8
impl Sub<i16x8> for i16x8
impl Sub<f32x4> for f32x4
impl Sub<f32x4> for f32x4
impl<'_> Sub<&'_ u64x4> for u64x4
impl<'_> Sub<&'_ u64x4> for u64x4
impl<'_> Sub<&'_ u16x8> for u16x8
impl<'_> Sub<&'_ u16x8> for u16x8
impl<'_> Sub<&'_ u32x8> for u32x8
impl<'_> Sub<&'_ u32x8> for u32x8
impl Sub<i8x32> for i8x32
impl Sub<i8x32> for i8x32
impl Sub<u32x8> for u32x8
impl Sub<u32x8> for u32x8
impl Sub<u32x4> for u32x4
impl Sub<u32x4> for u32x4
impl<'_> Sub<&'_ i32x8> for i32x8
impl<'_> Sub<&'_ i32x8> for i32x8
impl<'_> Sub<&'_ u64x2> for u64x2
impl<'_> Sub<&'_ u64x2> for u64x2
Subtracts another NaiveDateTime
from the current date and time.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveDateTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
The implementation is a wrapper around
NaiveDateTime::signed_duration_since
.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
assert_eq!(d.and_hms(3, 5, 7) - d.and_hms(2, 4, 6), Duration::seconds(3600 + 60 + 1));
// July 8 is 190th day in the year 2016
let d0 = from_ymd(2016, 1, 1);
assert_eq!(d.and_hms_milli(0, 7, 6, 500) - d0.and_hms(0, 0, 0),
Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500);
assert_eq!(leap - from_ymd(2015, 6, 30).and_hms(23, 0, 0),
Duration::seconds(3600) + Duration::milliseconds(500));
assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0) - leap,
Duration::seconds(3600) - Duration::milliseconds(500));
type Output = NaiveDateTime
Subtracts another NaiveTime
from the current time.
Returns a Duration
within +/- 1 day.
This does not overflow or underflow at all.
As a part of Chrono’s leap second handling,
the subtraction assumes that there is no leap second ever,
except when any of the NaiveTime
s themselves represents a leap second
in which case the assumption becomes that
there are exactly one (or two) leap second(s) ever.
The implementation is a wrapper around
NaiveTime::signed_duration_since
.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), Duration::zero());
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), Duration::milliseconds(25));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), Duration::milliseconds(975));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), Duration::seconds(7));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), Duration::seconds(5 * 60));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), Duration::seconds(3 * 3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), Duration::seconds(-3600));
assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
Duration::seconds(3600 + 60 + 1) + Duration::milliseconds(100));
Leap seconds are handled, but the subtraction assumes that there were no other leap seconds happened.
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
Duration::milliseconds(1500));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), Duration::seconds(60));
assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), Duration::seconds(1));
assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
Duration::seconds(61));
A subtraction of Duration
from NaiveDateTime
yields another NaiveDateTime
.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveDateTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Panics on underflow or overflow.
Use NaiveDateTime::checked_sub_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
let d = from_ymd(2016, 7, 8);
let hms = |h, m, s| d.and_hms(h, m, s);
assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6));
assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8));
assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7));
assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400),
from_ymd(2016, 7, 7).and_hms(3, 5, 7));
assert_eq!(hms(3, 5, 7) - Duration::days(365),
from_ymd(2015, 7, 9).and_hms(3, 5, 7));
let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli);
assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1),
from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300));
type Output = NaiveDateTime
A subtraction of Duration
from NaiveDate
discards the fractional days,
rounding to the closest integral number of days towards Duration::zero()
.
It is the same as the addition with a negated Duration
.
Panics on underflow or overflow.
Use NaiveDate::checked_sub_signed
to detect that.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
assert_eq!(from_ymd(2014, 1, 1) - Duration::zero(), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::seconds(-86399), from_ymd(2014, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(1), from_ymd(2013, 12, 31));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(-1), from_ymd(2014, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(364), from_ymd(2013, 1, 2));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*4 + 1), from_ymd(2010, 1, 1));
assert_eq!(from_ymd(2014, 1, 1) - Duration::days(365*400 + 97), from_ymd(1614, 1, 1));
A subtraction of Duration
from NaiveTime
wraps around and never overflows or underflows.
In particular the addition ignores integral number of days.
It is the same as the addition with a negated Duration
.
As a part of Chrono’s leap second handling,
the addition assumes that there is no leap second ever,
except when the NaiveTime
itself represents a leap second
in which case the assumption becomes that there is exactly a single leap second ever.
Example
use chrono::{Duration, NaiveTime};
let from_hmsm = NaiveTime::from_hms_milli;
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::zero(), from_hmsm(3, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(1), from_hmsm(3, 5, 6, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(60 + 5), from_hmsm(3, 4, 2, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::milliseconds(80), from_hmsm(3, 5, 6, 920));
assert_eq!(from_hmsm(3, 5, 7, 950) - Duration::milliseconds(280), from_hmsm(3, 5, 7, 670));
The subtraction wraps around.
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
assert_eq!(from_hmsm(3, 5, 7, 0) - Duration::days(800), from_hmsm(3, 5, 7, 0));
Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
let leap = from_hmsm(3, 5, 59, 1_300);
assert_eq!(leap - Duration::zero(), from_hmsm(3, 5, 59, 1_300));
assert_eq!(leap - Duration::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
assert_eq!(leap - Duration::milliseconds(500), from_hmsm(3, 5, 59, 800));
assert_eq!(leap - Duration::seconds(60), from_hmsm(3, 5, 0, 300));
assert_eq!(leap - Duration::days(1), from_hmsm(3, 6, 0, 300));
Subtracts another NaiveDate
from the current date.
Returns a Duration
of integral numbers.
This does not overflow or underflow at all,
as all possible output fits in the range of Duration
.
The implementation is a wrapper around
NaiveDate::signed_duration_since
.
Example
use chrono::{Duration, NaiveDate};
let from_ymd = NaiveDate::from_ymd;
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2014, 1, 1), Duration::zero());
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 12, 31), Duration::days(1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2014, 1, 2), Duration::days(-1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 9, 23), Duration::days(100));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2013, 1, 1), Duration::days(365));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(2010, 1, 1), Duration::days(365*4 + 1));
assert_eq!(from_ymd(2014, 1, 1) - from_ymd(1614, 1, 1), Duration::days(365*400 + 97));