Trait rust_rpg_toolkit::prelude::Mul 1.0.0[−][src]
Expand description
The multiplication operator *
.
Note that Rhs
is Self
by default, but this is not mandatory.
Examples
Mul
tipliable rational numbers
use std::ops::Mul;
// By the fundamental theorem of arithmetic, rational numbers in lowest
// terms are unique. So, by keeping `Rational`s in reduced form, we can
// derive `Eq` and `PartialEq`.
#[derive(Debug, Eq, PartialEq)]
struct Rational {
numerator: usize,
denominator: usize,
}
impl Rational {
fn new(numerator: usize, denominator: usize) -> Self {
if denominator == 0 {
panic!("Zero is an invalid denominator!");
}
// Reduce to lowest terms by dividing by the greatest common
// divisor.
let gcd = gcd(numerator, denominator);
Self {
numerator: numerator / gcd,
denominator: denominator / gcd,
}
}
}
impl Mul for Rational {
// The multiplication of rational numbers is a closed operation.
type Output = Self;
fn mul(self, rhs: Self) -> Self {
let numerator = self.numerator * rhs.numerator;
let denominator = self.denominator * rhs.denominator;
Self::new(numerator, denominator)
}
}
// Euclid's two-thousand-year-old algorithm for finding the greatest common
// divisor.
fn gcd(x: usize, y: usize) -> usize {
let mut x = x;
let mut y = y;
while y != 0 {
let t = y;
y = x % y;
x = t;
}
x
}
assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
assert_eq!(Rational::new(2, 3) * Rational::new(3, 4),
Rational::new(1, 2));
Multiplying vectors by scalars as in linear algebra
use std::ops::Mul;
struct Scalar { value: usize }
#[derive(Debug, PartialEq)]
struct Vector { value: Vec<usize> }
impl Mul<Scalar> for Vector {
type Output = Self;
fn mul(self, rhs: Scalar) -> Self::Output {
Self { value: self.value.iter().map(|v| v * rhs.value).collect() }
}
}
let vector = Vector { value: vec![2, 4, 6] };
let scalar = Scalar { value: 3 };
assert_eq!(vector * scalar, Vector { value: vec![6, 12, 18] });
Associated Types
Required methods
Implementations on Foreign Types
type Output = <Saturating<u64> as Mul<Saturating<u64>>>::Output
pub fn mul(
self,
other: &Saturating<u64>
) -> <Saturating<u64> as Mul<Saturating<u64>>>::Output
type Output = Saturating<usize>
type Output = <Saturating<i128> as Mul<Saturating<i128>>>::Output
pub fn mul(
self,
other: Saturating<i128>
) -> <Saturating<i128> as Mul<Saturating<i128>>>::Output
type Output = Saturating<u16>
type Output = <Saturating<u32> as Mul<Saturating<u32>>>::Output
pub fn mul(
self,
other: &Saturating<u32>
) -> <Saturating<u32> as Mul<Saturating<u32>>>::Output
type Output = <Saturating<u8> as Mul<Saturating<u8>>>::Output
type Output = Saturating<i8>
type Output = <Saturating<u128> as Mul<Saturating<u128>>>::Output
pub fn mul(
self,
other: &Saturating<u128>
) -> <Saturating<u128> as Mul<Saturating<u128>>>::Output
type Output = <Saturating<i8> as Mul<Saturating<i8>>>::Output
type Output = <Saturating<u32> as Mul<Saturating<u32>>>::Output
type Output = Saturating<u64>
type Output = <Saturating<u128> as Mul<Saturating<u128>>>::Output
pub fn mul(
self,
other: &Saturating<u128>
) -> <Saturating<u128> as Mul<Saturating<u128>>>::Output
type Output = Saturating<u128>
type Output = <Saturating<i64> as Mul<Saturating<i64>>>::Output
type Output = <Saturating<u64> as Mul<Saturating<u64>>>::Output
pub fn mul(
self,
other: &Saturating<u64>
) -> <Saturating<u64> as Mul<Saturating<u64>>>::Output
type Output = <Saturating<usize> as Mul<Saturating<usize>>>::Output
pub fn mul(
self,
other: Saturating<usize>
) -> <Saturating<usize> as Mul<Saturating<usize>>>::Output
type Output = <Saturating<u16> as Mul<Saturating<u16>>>::Output
type Output = <Saturating<i128> as Mul<Saturating<i128>>>::Output
pub fn mul(
self,
other: &Saturating<i128>
) -> <Saturating<i128> as Mul<Saturating<i128>>>::Output
type Output = Saturating<u8>
type Output = Saturating<i32>
type Output = Saturating<i64>
type Output = <Saturating<u8> as Mul<Saturating<u8>>>::Output
type Output = <Saturating<u128> as Mul<Saturating<u128>>>::Output
pub fn mul(
self,
other: Saturating<u128>
) -> <Saturating<u128> as Mul<Saturating<u128>>>::Output
type Output = <Saturating<u8> as Mul<Saturating<u8>>>::Output
type Output = <Saturating<u64> as Mul<Saturating<u64>>>::Output
type Output = <Saturating<i16> as Mul<Saturating<i16>>>::Output
pub fn mul(
self,
other: &Saturating<i16>
) -> <Saturating<i16> as Mul<Saturating<i16>>>::Output
type Output = <Saturating<isize> as Mul<Saturating<isize>>>::Output
pub fn mul(
self,
other: &Saturating<isize>
) -> <Saturating<isize> as Mul<Saturating<isize>>>::Output
type Output = <Saturating<i32> as Mul<Saturating<i32>>>::Output
type Output = <Saturating<u16> as Mul<Saturating<u16>>>::Output
pub fn mul(
self,
other: &Saturating<u16>
) -> <Saturating<u16> as Mul<Saturating<u16>>>::Output
type Output = Saturating<isize>
type Output = <Saturating<i8> as Mul<Saturating<i8>>>::Output
type Output = Saturating<u32>
type Output = <Saturating<usize> as Mul<Saturating<usize>>>::Output
pub fn mul(
self,
other: &Saturating<usize>
) -> <Saturating<usize> as Mul<Saturating<usize>>>::Output
type Output = <Saturating<i32> as Mul<Saturating<i32>>>::Output
pub fn mul(
self,
other: &Saturating<i32>
) -> <Saturating<i32> as Mul<Saturating<i32>>>::Output
type Output = <Saturating<isize> as Mul<Saturating<isize>>>::Output
pub fn mul(
self,
other: &Saturating<isize>
) -> <Saturating<isize> as Mul<Saturating<isize>>>::Output
type Output = Saturating<i128>
type Output = <Saturating<i16> as Mul<Saturating<i16>>>::Output
pub fn mul(
self,
other: &Saturating<i16>
) -> <Saturating<i16> as Mul<Saturating<i16>>>::Output
type Output = <Saturating<isize> as Mul<Saturating<isize>>>::Output
pub fn mul(
self,
other: Saturating<isize>
) -> <Saturating<isize> as Mul<Saturating<isize>>>::Output
type Output = <Saturating<i16> as Mul<Saturating<i16>>>::Output
type Output = <Saturating<u16> as Mul<Saturating<u16>>>::Output
pub fn mul(
self,
other: &Saturating<u16>
) -> <Saturating<u16> as Mul<Saturating<u16>>>::Output
type Output = <Saturating<i128> as Mul<Saturating<i128>>>::Output
pub fn mul(
self,
other: &Saturating<i128>
) -> <Saturating<i128> as Mul<Saturating<i128>>>::Output
type Output = Saturating<i16>
type Output = <Saturating<i32> as Mul<Saturating<i32>>>::Output
pub fn mul(
self,
other: &Saturating<i32>
) -> <Saturating<i32> as Mul<Saturating<i32>>>::Output
type Output = <Saturating<i8> as Mul<Saturating<i8>>>::Output
type Output = <Saturating<usize> as Mul<Saturating<usize>>>::Output
pub fn mul(
self,
other: &Saturating<usize>
) -> <Saturating<usize> as Mul<Saturating<usize>>>::Output
type Output = <Saturating<i64> as Mul<Saturating<i64>>>::Output
pub fn mul(
self,
other: &Saturating<i64>
) -> <Saturating<i64> as Mul<Saturating<i64>>>::Output
type Output = <Saturating<i64> as Mul<Saturating<i64>>>::Output
pub fn mul(
self,
other: &Saturating<i64>
) -> <Saturating<i64> as Mul<Saturating<i64>>>::Output
type Output = <Saturating<u32> as Mul<Saturating<u32>>>::Output
pub fn mul(
self,
other: &Saturating<u32>
) -> <Saturating<u32> as Mul<Saturating<u32>>>::Output
impl Mul<Point> for Point
impl Mul<Point> for Point
Support multiplying a point by a point
Support multiplying a point by an f32
impl Mul<Point3> for Point3
impl Mul<Point3> for Point3
Support multiplying a point by a point
Support multiplying a point by an int
Support multiplying a point by an f32
Support multiplying a point by an int
impl Mul<Rotor2x4> for Similarity2x4
impl Mul<Rotor2x4> for Similarity2x4
impl Mul<Isometry3x4> for Rotor3x4
impl Mul<Isometry3x4> for Rotor3x4
impl Mul<f32x4> for Isometry2x4
impl Mul<f32x4> for Isometry2x4
impl Mul<Similarity3> for Rotor3
impl Mul<Similarity3> for Rotor3
impl Mul<Isometry3x4> for Isometry3x4
impl Mul<Isometry3x4> for Isometry3x4
impl Mul<f32x4> for Isometry3x4
impl Mul<f32x4> for Isometry3x4
impl Mul<Rotor2x4> for Isometry2x4
impl Mul<Rotor2x4> for Isometry2x4
impl Mul<Rotor2x4> for Rotor2x4
impl Mul<Rotor2x4> for Rotor2x4
The composition of self
with q
, i.e. self * q
gives the rotation as though
you first perform q
and then self
.
impl Mul<Rotor3> for Similarity3
impl Mul<Rotor3> for Similarity3
impl Mul<Similarity3x4> for Similarity3x4
impl Mul<Similarity3x4> for Similarity3x4
impl Mul<Similarity3x8> for Similarity3x8
impl Mul<Similarity3x8> for Similarity3x8
impl Mul<Rotor3> for Rotor3
impl Mul<Rotor3> for Rotor3
The composition of self
with q
, i.e. self * q
gives the rotation as though
you first perform q
and then self
.
impl Mul<Similarity2x8> for Similarity2x8
impl Mul<Similarity2x8> for Similarity2x8
impl Mul<Rotor2x8> for Isometry2x8
impl Mul<Rotor2x8> for Isometry2x8
impl Mul<Similarity3x4> for Rotor3x4
impl Mul<Similarity3x4> for Rotor3x4
impl Mul<Rotor2x8> for Rotor2x8
impl Mul<Rotor2x8> for Rotor2x8
The composition of self
with q
, i.e. self * q
gives the rotation as though
you first perform q
and then self
.
impl Mul<Isometry2> for Isometry2
impl Mul<Isometry2> for Isometry2
impl Mul<f32x8> for Isometry2x8
impl Mul<f32x8> for Isometry2x8
impl Mul<Rotor3x4> for Similarity3x4
impl Mul<Rotor3x4> for Similarity3x4
impl Mul<Similarity2> for Similarity2
impl Mul<Similarity2> for Similarity2
impl Mul<Similarity2x8> for Rotor2x8
impl Mul<Similarity2x8> for Rotor2x8
impl Mul<Rotor3x8> for Similarity3x8
impl Mul<Rotor3x8> for Similarity3x8
impl Mul<f32x8> for Similarity3x8
impl Mul<f32x8> for Similarity3x8
impl Mul<f32x8> for Isometry3x8
impl Mul<f32x8> for Isometry3x8
impl Mul<Similarity2x4> for Similarity2x4
impl Mul<Similarity2x4> for Similarity2x4
impl Mul<Rotor3x8> for Isometry3x8
impl Mul<Rotor3x8> for Isometry3x8
impl Mul<f32x8> for Similarity2x8
impl Mul<f32x8> for Similarity2x8
impl Mul<Rotor2> for Similarity2
impl Mul<Rotor2> for Similarity2
impl Mul<Isometry3x8> for Isometry3x8
impl Mul<Isometry3x8> for Isometry3x8
impl Mul<Isometry2x8> for Rotor2x8
impl Mul<Isometry2x8> for Rotor2x8
impl Mul<Isometry3> for Isometry3
impl Mul<Isometry3> for Isometry3
impl Mul<Rotor3x4> for Rotor3x4
impl Mul<Rotor3x4> for Rotor3x4
The composition of self
with q
, i.e. self * q
gives the rotation as though
you first perform q
and then self
.
impl Mul<Rotor2x8> for Similarity2x8
impl Mul<Rotor2x8> for Similarity2x8
impl Mul<Rotor2> for Rotor2
impl Mul<Rotor2> for Rotor2
The composition of self
with q
, i.e. self * q
gives the rotation as though
you first perform q
and then self
.
impl Mul<Isometry2x8> for Isometry2x8
impl Mul<Isometry2x8> for Isometry2x8
impl Mul<Rotor3x8> for Rotor3x8
impl Mul<Rotor3x8> for Rotor3x8
The composition of self
with q
, i.e. self * q
gives the rotation as though
you first perform q
and then self
.