Struct rust_pathtracer::prelude::UDU
source · pub struct UDU<T, D>where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>,{
pub u: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>,
pub d: Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<T, D, Const<1>>>::Buffer>,
}Expand description
UDU factorization.
Fields§
§u: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>The upper triangular matrix resulting from the factorization
d: Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<T, D, Const<1>>>::Buffer>The diagonal matrix resulting from the factorization
Implementations§
source§impl<T, D> UDU<T, D>where
T: RealField,
D: Dim,
DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>,
impl<T, D> UDU<T, D>where T: RealField, D: Dim, DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>,
sourcepub fn new(
p: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
) -> Option<UDU<T, D>>
pub fn new( p: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer> ) -> Option<UDU<T, D>>
Computes the UDU^T factorization.
The input matrix p is assumed to be symmetric and this decomposition will only read
the upper-triangular part of p.
Ref.: “Optimal control and estimation-Dover Publications”, Robert F. Stengel, (1994) page 360
Trait Implementations§
source§impl<T, D> Clone for UDU<T, D>where
T: Clone + RealField,
D: Clone + Dim,
DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>,
impl<T, D> Clone for UDU<T, D>where T: Clone + RealField, D: Clone + Dim, DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>,
source§impl<T, D> Debug for UDU<T, D>where
T: Debug + RealField,
D: Debug + Dim,
DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>,
impl<T, D> Debug for UDU<T, D>where T: Debug + RealField, D: Debug + Dim, DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>,
impl<T, D> Copy for UDU<T, D>where T: RealField, D: Dim, DefaultAllocator: Allocator<T, D, Const<1>> + Allocator<T, D, D>, Matrix<T, D, Const<1>, <DefaultAllocator as Allocator<T, D, Const<1>>>::Buffer>: Copy, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>: Copy,
Auto Trait Implementations§
impl<T, D> !RefUnwindSafe for UDU<T, D>
impl<T, D> !Send for UDU<T, D>
impl<T, D> !Sync for UDU<T, D>
impl<T, D> !Unpin for UDU<T, D>
impl<T, D> !UnwindSafe for UDU<T, D>
Blanket Implementations§
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.