Struct rust_pathtracer::prelude::SymmetricTridiagonal
source · pub struct SymmetricTridiagonal<T, D>where
T: ComplexField,
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>,{ /* private fields */ }Expand description
Tridiagonalization of a symmetric matrix.
Implementations§
source§impl<T, D> SymmetricTridiagonal<T, D>where
T: ComplexField,
D: DimSub<Const<1>>,
DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>,
impl<T, D> SymmetricTridiagonal<T, D>where T: ComplexField, D: DimSub<Const<1>>, DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>,
sourcepub fn new(
m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>
) -> SymmetricTridiagonal<T, D>
pub fn new( m: Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer> ) -> SymmetricTridiagonal<T, D>
Computes the tridiagonalization of the symmetric matrix m.
Only the lower-triangular part (including the diagonal) of m is read.
sourcepub fn unpack(
self
) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>>::Buffer>)where
DefaultAllocator: Allocator<<T as ComplexField>::RealField, D, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
pub fn unpack( self ) -> (Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>, Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>>::Buffer>)where DefaultAllocator: Allocator<<T as ComplexField>::RealField, D, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
Retrieve the orthogonal transformation, diagonal, and off diagonal elements of this decomposition.
sourcepub fn unpack_tridiagonal(
self
) -> (Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>>::Buffer>)where
DefaultAllocator: Allocator<<T as ComplexField>::RealField, D, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
pub fn unpack_tridiagonal( self ) -> (Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>, Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>>::Buffer>)where DefaultAllocator: Allocator<<T as ComplexField>::RealField, D, Const<1>> + Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
Retrieve the diagonal, and off diagonal elements of this decomposition.
sourcepub fn diagonal(
&self
) -> Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>where
DefaultAllocator: Allocator<<T as ComplexField>::RealField, D, Const<1>>,
pub fn diagonal( &self ) -> Matrix<<T as ComplexField>::RealField, D, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, D, Const<1>>>::Buffer>where DefaultAllocator: Allocator<<T as ComplexField>::RealField, D, Const<1>>,
The diagonal components of this decomposition.
sourcepub fn off_diagonal(
&self
) -> Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>>::Buffer>where
DefaultAllocator: Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
pub fn off_diagonal( &self ) -> Matrix<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>>::Buffer>where DefaultAllocator: Allocator<<T as ComplexField>::RealField, <D as DimSub<Const<1>>>::Output, Const<1>>,
The off-diagonal components of this decomposition.
Trait Implementations§
source§impl<T, D> Clone for SymmetricTridiagonal<T, D>where
T: Clone + ComplexField,
D: Clone + DimSub<Const<1>>,
DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>,
impl<T, D> Clone for SymmetricTridiagonal<T, D>where T: Clone + ComplexField, D: Clone + DimSub<Const<1>>, DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>,
source§fn clone(&self) -> SymmetricTridiagonal<T, D>
fn clone(&self) -> SymmetricTridiagonal<T, D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl<T, D> Debug for SymmetricTridiagonal<T, D>where
T: Debug + ComplexField,
D: Debug + DimSub<Const<1>>,
DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>,
impl<T, D> Debug for SymmetricTridiagonal<T, D>where T: Debug + ComplexField, D: Debug + DimSub<Const<1>>, DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>,
impl<T, D> Copy for SymmetricTridiagonal<T, D>where T: ComplexField, D: DimSub<Const<1>>, DefaultAllocator: Allocator<T, D, D> + Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>, Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>: Copy, Matrix<T, <D as DimSub<Const<1>>>::Output, Const<1>, <DefaultAllocator as Allocator<T, <D as DimSub<Const<1>>>::Output, Const<1>>>::Buffer>: Copy,
Auto Trait Implementations§
impl<T, D> !RefUnwindSafe for SymmetricTridiagonal<T, D>
impl<T, D> !Send for SymmetricTridiagonal<T, D>
impl<T, D> !Sync for SymmetricTridiagonal<T, D>
impl<T, D> !Unpin for SymmetricTridiagonal<T, D>
impl<T, D> !UnwindSafe for SymmetricTridiagonal<T, D>
Blanket Implementations§
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.